Dec 122017
 
Document describing format for Internet mail and messages.
File RFC822.ZIP from The Programmer’s Corner in
Category UNIX Files
Document describing format for Internet mail and messages.
File Name File Size Zip Size Zip Type
RFC822.TXT 109097 30302 deflated

Download File RFC822.ZIP Here

Contents of the RFC822.TXT file









RFC # 822

Obsoletes: RFC #733 (NIC #41952)












STANDARD FOR THE FORMAT OF

ARPA INTERNET TEXT MESSAGES






August 13, 1982






Revised by

David H. Crocker


Dept. of Electrical Engineering
University of Delaware, Newark, DE 19711
Network: DCrocker @ UDel-Relay















Standard for ARPA Internet Text Messages


TABLE OF CONTENTS


PREFACE .................................................... ii

1. INTRODUCTION ........................................... 1

1.1. Scope ............................................ 1
1.2. Communication Framework .......................... 2

2. NOTATIONAL CONVENTIONS ................................. 3

3. LEXICAL ANALYSIS OF MESSAGES ........................... 5

3.1. General Description .............................. 5
3.2. Header Field Definitions ......................... 9
3.3. Lexical Tokens ................................... 10
3.4. Clarifications ................................... 11

4. MESSAGE SPECIFICATION .................................. 17

4.1. Syntax ........................................... 17
4.2. Forwarding ....................................... 19
4.3. Trace Fields ..................................... 20
4.4. Originator Fields ................................ 21
4.5. Receiver Fields .................................. 23
4.6. Reference Fields ................................. 23
4.7. Other Fields ..................................... 24

5. DATE AND TIME SPECIFICATION ............................ 26

5.1. Syntax ........................................... 26
5.2. Semantics ........................................ 26

6. ADDRESS SPECIFICATION .................................. 27

6.1. Syntax ........................................... 27
6.2. Semantics ........................................ 27
6.3. Reserved Address ................................. 33

7. BIBLIOGRAPHY ........................................... 34


APPENDIX

A. EXAMPLES ............................................... 36
B. SIMPLE FIELD PARSING ................................... 40
C. DIFFERENCES FROM RFC #733 .............................. 41
D. ALPHABETICAL LISTING OF SYNTAX RULES ................... 44


August 13, 1982 - i - RFC #822




Standard for ARPA Internet Text Messages


PREFACE


By 1977, the Arpanet employed several informal standards for
the text messages (mail) sent among its host computers. It was
felt necessary to codify these practices and provide for those
features that seemed imminent. The result of that effort was
Request for Comments (RFC) #733, "Standard for the Format of ARPA
Network Text Message", by Crocker, Vittal, Pogran, and Henderson.
The specification attempted to avoid major changes in existing
software, while permitting several new features.

This document revises the specifications in RFC #733, in
order to serve the needs of the larger and more complex ARPA
Internet. Some of RFC #733's features failed to gain adequate
acceptance. In order to simplify the standard and the software
that follows it, these features have been removed. A different
addressing scheme is used, to handle the case of inter-network
mail; and the concept of re-transmission has been introduced.

This specification is intended for use in the ARPA Internet.
However, an attempt has been made to free it of any dependence on
that environment, so that it can be applied to other network text
message systems.

The specification of RFC #733 took place over the course of
one year, using the ARPANET mail environment, itself, to provide
an on-going forum for discussing the capabilities to be included.
More than twenty individuals, from across the country, partici-
pated in the original discussion. The development of this
revised specification has, similarly, utilized network mail-based
group discussion. Both specification efforts greatly benefited
from the comments and ideas of the participants.

The syntax of the standard, in RFC #733, was originally
specified in the Backus-Naur Form (BNF) meta-language. Ken L.
Harrenstien, of SRI International, was responsible for re-coding
the BNF into an augmented BNF that makes the representation
smaller and easier to understand.












August 13, 1982 - ii - RFC #822



Standard for ARPA Internet Text Messages


1. INTRODUCTION

1.1. SCOPE

This standard specifies a syntax for text messages that are
sent among computer users, within the framework of "electronic
mail". The standard supersedes the one specified in ARPANET
Request for Comments #733, "Standard for the Format of ARPA Net-
work Text Messages".

In this context, messages are viewed as having an envelope
and contents. The envelope contains whatever information is
needed to accomplish transmission and delivery. The contents
compose the object to be delivered to the recipient. This stan-
dard applies only to the format and some of the semantics of mes-
sage contents. It contains no specification of the information
in the envelope.

However, some message systems may use information from the
contents to create the envelope. It is intended that this stan-
dard facilitate the acquisition of such information by programs.

Some message systems may store messages in formats that
differ from the one specified in this standard. This specifica-
tion is intended strictly as a definition of what message content
format is to be passed BETWEEN hosts.

Note: This standard is NOT intended to dictate the internal for-
mats used by sites, the specific message system features
that they are expected to support, or any of the charac-
teristics of user interface programs that create or read
messages.

A distinction should be made between what the specification
REQUIRES and what it ALLOWS. Messages can be made complex and
rich with formally-structured components of information or can be
kept small and simple, with a minimum of such information. Also,
the standard simplifies the interpretation of differing visual
formats in messages; only the visual aspect of a message is
affected and not the interpretation of information within it.
Implementors may choose to retain such visual distinctions.

The formal definition is divided into four levels. The bot-
tom level describes the meta-notation used in this document. The
second level describes basic lexical analyzers that feed tokens
to higher-level parsers. Next is an overall specification for
messages; it permits distinguishing individual fields. Finally,
there is definition of the contents of several structured fields.



August 13, 1982 - 1 - RFC #822



Standard for ARPA Internet Text Messages


1.2. COMMUNICATION FRAMEWORK

Messages consist of lines of text. No special provisions
are made for encoding drawings, facsimile, speech, or structured
text. No significant consideration has been given to questions
of data compression or to transmission and storage efficiency,
and the standard tends to be free with the number of bits con-
sumed. For example, field names are specified as free text,
rather than special terse codes.

A general "memo" framework is used. That is, a message con-
sists of some information in a rigid format, followed by the main
part of the message, with a format that is not specified in this
document. The syntax of several fields of the rigidly-formated
("headers") section is defined in this specification; some of
these fields must be included in all messages.

The syntax that distinguishes between header fields is
specified separately from the internal syntax for particular
fields. This separation is intended to allow simple parsers to
operate on the general structure of messages, without concern for
the detailed structure of individual header fields. Appendix B
is provided to facilitate construction of these parsers.

In addition to the fields specified in this document, it is
expected that other fields will gain common use. As necessary,
the specifications for these "extension-fields" will be published
through the same mechanism used to publish this document. Users
may also wish to extend the set of fields that they use
privately. Such "user-defined fields" are permitted.

The framework severely constrains document tone and appear-
ance and is primarily useful for most intra-organization communi-
cations and well-structured inter-organization communication.
It also can be used for some types of inter-process communica-
tion, such as simple file transfer and remote job entry. A more
robust framework might allow for multi-font, multi-color, multi-
dimension encoding of information. A less robust one, as is
present in most single-machine message systems, would more
severely constrain the ability to add fields and the decision to
include specific fields. In contrast with paper-based communica-
tion, it is interesting to note that the RECEIVER of a message
can exercise an extraordinary amount of control over the
message's appearance. The amount of actual control available to
message receivers is contingent upon the capabilities of their
individual message systems.





August 13, 1982 - 2 - RFC #822



Standard for ARPA Internet Text Messages


2. NOTATIONAL CONVENTIONS

This specification uses an augmented Backus-Naur Form (BNF)
notation. The differences from standard BNF involve naming rules
and indicating repetition and "local" alternatives.

2.1. RULE NAMING

Angle brackets ("<", ">") are not used, in general. The
name of a rule is simply the name itself, rather than "".
Quotation-marks enclose literal text (which may be upper and/or
lower case). Certain basic rules are in uppercase, such as
SPACE, TAB, CRLF, DIGIT, ALPHA, etc. Angle brackets are used in
rule definitions, and in the rest of this document, whenever
their presence will facilitate discerning the use of rule names.

2.2. RULE1 / RULE2: ALTERNATIVES

Elements separated by slash ("/") are alternatives. There-
fore "foo / bar" will accept foo or bar.

2.3. (RULE1 RULE2): LOCAL ALTERNATIVES

Elements enclosed in parentheses are treated as a single
element. Thus, "(elem (foo / bar) elem)" allows the token
sequences "elem foo elem" and "elem bar elem".

2.4. *RULE: REPETITION

The character "*" preceding an element indicates repetition.
The full form is:

*element

indicating at least and at most occurrences of element.
Default values are 0 and infinity so that "*(element)" allows any
number, including zero; "1*element" requires at least one; and
"1*2element" allows one or two.

2.5. [RULE]: OPTIONAL

Square brackets enclose optional elements; "[foo bar]" is
equivalent to "*1(foo bar)".

2.6. NRULE: SPECIFIC REPETITION

"(element)" is equivalent to "*(element)"; that is,
exactly occurrences of (element). Thus 2DIGIT is a 2-digit
number, and 3ALPHA is a string of three alphabetic characters.


August 13, 1982 - 3 - RFC #822



Standard for ARPA Internet Text Messages


2.7. #RULE: LISTS

A construct "#" is defined, similar to "*", as follows:

#element

indicating at least and at most elements, each separated
by one or more commas (","). This makes the usual form of lists
very easy; a rule such as '(element *("," element))' can be shown
as "1#element". Wherever this construct is used, null elements
are allowed, but do not contribute to the count of elements
present. That is, "(element),,(element)" is permitted, but
counts as only two elements. Therefore, where at least one ele-
ment is required, at least one non-null element must be present.
Default values are 0 and infinity so that "#(element)" allows any
number, including zero; "1#element" requires at least one; and
"1#2element" allows one or two.

2.8. ; COMMENTS

A semi-colon, set off some distance to the right of rule
text, starts a comment that continues to the end of line. This
is a simple way of including useful notes in parallel with the
specifications.



























August 13, 1982 - 4 - RFC #822



Standard for ARPA Internet Text Messages


3. LEXICAL ANALYSIS OF MESSAGES

3.1. GENERAL DESCRIPTION

A message consists of header fields and, optionally, a body.
The body is simply a sequence of lines containing ASCII charac-
ters. It is separated from the headers by a null line (i.e., a
line with nothing preceding the CRLF).

3.1.1. LONG HEADER FIELDS

Each header field can be viewed as a single, logical line of
ASCII characters, comprising a field-name and a field-body.
For convenience, the field-body portion of this conceptual
entity can be split into a multiple-line representation; this
is called "folding". The general rule is that wherever there
may be linear-white-space (NOT simply LWSP-chars), a CRLF
immediately followed by AT LEAST one LWSP-char may instead be
inserted. Thus, the single line

To: "Joe & J. Harvey" , JJV @ BBN

can be represented as:

To: "Joe & J. Harvey" ,
[email protected]

and

To: "Joe & J. Harvey"
, JJV
@BBN

and

To: "Joe &
J. Harvey" , JJV @ BBN

The process of moving from this folded multiple-line
representation of a header field to its single line represen-
tation is called "unfolding". Unfolding is accomplished by
regarding CRLF immediately followed by a LWSP-char as
equivalent to the LWSP-char.

Note: While the standard permits folding wherever linear-
white-space is permitted, it is recommended that struc-
tured fields, such as those containing addresses, limit
folding to higher-level syntactic breaks. For address
fields, it is recommended that such folding occur


August 13, 1982 - 5 - RFC #822



Standard for ARPA Internet Text Messages


between addresses, after the separating comma.

3.1.2. STRUCTURE OF HEADER FIELDS

Once a field has been unfolded, it may be viewed as being com-
posed of a field-name followed by a colon (":"), followed by a
field-body, and terminated by a carriage-return/line-feed.
The field-name must be composed of printable ASCII characters
(i.e., characters that have values between 33. and 126.,
decimal, except colon). The field-body may be composed of any
ASCII characters, except CR or LF. (While CR and/or LF may be
present in the actual text, they are removed by the action of
unfolding the field.)

Certain field-bodies of headers may be interpreted according
to an internal syntax that some systems may wish to parse.
These fields are called "structured fields". Examples
include fields containing dates and addresses. Other fields,
such as "Subject" and "Comments", are regarded simply as
strings of text.

Note: Any field which has a field-body that is defined as
other than simply is to be treated as a struc-
tured field.

Field-names, unstructured field bodies and structured
field bodies each are scanned by their own, independent
"lexical" analyzers.

3.1.3. UNSTRUCTURED FIELD BODIES

For some fields, such as "Subject" and "Comments", no struc-
turing is assumed, and they are treated simply as s, as
in the message body. Rules of folding apply to these fields,
so that such field bodies which occupy several lines must
therefore have the second and successive lines indented by at
least one LWSP-char.

3.1.4. STRUCTURED FIELD BODIES

To aid in the creation and reading of structured fields, the
free insertion of linear-white-space (which permits folding
by inclusion of CRLFs) is allowed between lexical tokens.
Rather than obscuring the syntax specifications for these
structured fields with explicit syntax for this linear-white-
space, the existence of another "lexical" analyzer is assumed.
This analyzer does not apply for unstructured field bodies
that are simply strings of text, as described above. The
analyzer provides an interpretation of the unfolded text


August 13, 1982 - 6 - RFC #822



Standard for ARPA Internet Text Messages


composing the body of the field as a sequence of lexical sym-
bols.

These symbols are:

- individual special characters
- quoted-strings
- domain-literals
- comments
- atoms

The first four of these symbols are self-delimiting. Atoms
are not; they are delimited by the self-delimiting symbols and
by linear-white-space. For the purposes of regenerating
sequences of atoms and quoted-strings, exactly one SPACE is
assumed to exist, and should be used, between them. (Also, in
the "Clarifications" section on "White Space", below, note the
rules about treatment of multiple contiguous LWSP-chars.)

So, for example, the folded body of an address field

":sysmail"@ Some-Group. Some-Org,
Muhammed.(I am the greatest) Ali @(the)Vegas.WBA


August 13, 1982 - 7 - RFC #822



Standard for ARPA Internet Text Messages


is analyzed into the following lexical symbols and types:

:sysmail quoted string
@ special
Some-Group atom
. special
Some-Org atom
, special
Muhammed atom
. special
(I am the greatest) comment
Ali atom
@ atom
(the) comment
Vegas atom
. special
WBA atom

The canonical representations for the data in these addresses
are the following strings:

":sysmail"@Some-Group.Some-Org

and

[email protected]

Note: For purposes of display, and when passing such struc-
tured information to other systems, such as mail proto-
col services, there must be NO linear-white-space
between s that are separated by period (".") or
at-sign ("@") and exactly one SPACE between all other
s. Also, headers should be in a folded form.


















August 13, 1982 - 8 - RFC #822



Standard for ARPA Internet Text Messages


3.2. HEADER FIELD DEFINITIONS

These rules show a field meta-syntax, without regard for the
particular type or internal syntax. Their purpose is to permit
detection of fields; also, they present to higher-level parsers
an image of each field as fitting on one line.

field = field-name ":" [ field-body ] CRLF

field-name = 1*

field-body = field-body-contents
[CRLF LWSP-char field-body]

field-body-contents =
defined in the following sections, and consisting
of combinations of atom, quoted-string, and
specials tokens, or else consisting of texts>
































August 13, 1982 - 9 - RFC #822



Standard for ARPA Internet Text Messages


3.3. LEXICAL TOKENS

The following rules are used to define an underlying lexical
analyzer, which feeds tokens to higher level parsers. See the
ANSI references, in the Bibliography.

; ( Octal, Decimal.)
CHAR = ; ( 0-177, 0.-127.)
ALPHA =
; (101-132, 65.- 90.)
; (141-172, 97.-122.)
DIGIT = ; ( 60- 71, 48.- 57.)
CTL = character and DEL> ; ( 177, 127.)
CR = ; ( 15, 13.)
LF = ; ( 12, 10.)
SPACE = ; ( 40, 32.)
HTAB = ; ( 11, 9.)
<"> = ; ( 42, 34.)
CRLF = CR LF

LWSP-char = SPACE / HTAB ; semantics = SPACE

linear-white-space = 1*([CRLF] LWSP-char) ; semantics = SPACE
; CRLF => folding

specials = "(" / ")" / "<" / ">" / "@" ; Must be in quoted-
/ "," / ";" / ":" / "\" / <"> ; string, to use
/ "." / "[" / "]" ; within a word.

delimiters = specials / linear-white-space / comment

text = atoms, specials,
CR & bare LF, but NOT ; comments and
including CRLF> ; quoted-strings are
; NOT recognized.

atom = 1*

quoted-string = <"> *(qtext/quoted-pair) <">; Regular qtext or
; quoted chars.

qtext = , ; => may be folded
"\" & CR, and including
linear-white-space>

domain-literal = "[" *(dtext / quoted-pair) "]"




August 13, 1982 - 10 - RFC #822



Standard for ARPA Internet Text Messages


dtext = may be folded
"]", "\" & CR, & including
linear-white-space>

comment = "(" *(ctext / quoted-pair / comment) ")"

ctext = may be folded
")", "\" & CR, & including
linear-white-space>

quoted-pair = "\" CHAR ; may quote any char

phrase = 1*word ; Sequence of words

word = atom / quoted-string


3.4. CLARIFICATIONS

3.4.1. QUOTING

Some characters are reserved for special interpretation, such
as delimiting lexical tokens. To permit use of these charac-
ters as uninterpreted data, a quoting mechanism is provided.
To quote a character, precede it with a backslash ("\").

This mechanism is not fully general. Characters may be quoted
only within a subset of the lexical constructs. In particu-
lar, quoting is limited to use within:

- quoted-string
- domain-literal
- comment

Within these constructs, quoting is REQUIRED for CR and "\"
and for the character(s) that delimit the token (e.g., "(" and
")" for a comment). However, quoting is PERMITTED for any
character.

Note: In particular, quoting is NOT permitted within atoms.
For example when the local-part of an addr-spec must
contain a special character, a quoted string must be
used. Therefore, a specification such as:

Full\ [email protected]

is not legal and must be specified as:

"Full Name"@Domain


August 13, 1982 - 11 - RFC #822



Standard for ARPA Internet Text Messages


3.4.2. WHITE SPACE

Note: In structured field bodies, multiple linear space ASCII
characters (namely HTABs and SPACEs) are treated as
single spaces and may freely surround any symbol. In
all header fields, the only place in which at least one
LWSP-char is REQUIRED is at the beginning of continua-
tion lines in a folded field.

When passing text to processes that do not interpret text
according to this standard (e.g., mail protocol servers), then
NO linear-white-space characters should occur between a period
(".") or at-sign ("@") and a . Exactly ONE SPACE should
be used in place of arbitrary linear-white-space and comment
sequences.

Note: Within systems conforming to this standard, wherever a
member of the list of delimiters is allowed, LWSP-chars
may also occur before and/or after it.

Writers of mail-sending (i.e., header-generating) programs
should realize that there is no network-wide definition of the
effect of ASCII HT (horizontal-tab) characters on the appear-
ance of text at another network host; therefore, the use of
tabs in message headers, though permitted, is discouraged.

3.4.3. COMMENTS

A comment is a set of ASCII characters, which is enclosed in
matching parentheses and which is not within a quoted-string
The comment construct permits message originators to add text
which will be useful for human readers, but which will be
ignored by the formal semantics. Comments should be retained
while the message is subject to interpretation according to
this standard. However, comments must NOT be included in
other cases, such as during protocol exchanges with mail
servers.

Comments nest, so that if an unquoted left parenthesis occurs
in a comment string, there must also be a matching right
parenthesis. When a comment acts as the delimiter between a
sequence of two lexical symbols, such as two atoms, it is lex-
ically equivalent with a single SPACE, for the purposes of
regenerating the sequence, such as when passing the sequence
onto a mail protocol server. Comments are detected as such
only within field-bodies of structured fields.

If a comment is to be "folded" onto multiple lines, then the
syntax for folding must be adhered to. (See the "Lexical


August 13, 1982 - 12 - RFC #822



Standard for ARPA Internet Text Messages


Analysis of Messages" section on "Folding Long Header Fields"
above, and the section on "Case Independence" below.) Note
that the official semantics therefore do not "see" any
unquoted CRLFs that are in comments, although particular pars-
ing programs may wish to note their presence. For these pro-
grams, it would be reasonable to interpret a "CRLF LWSP-char"
as being a CRLF that is part of the comment; i.e., the CRLF is
kept and the LWSP-char is discarded. Quoted CRLFs (i.e., a
backslash followed by a CR followed by a LF) still must be
followed by at least one LWSP-char.

3.4.4. DELIMITING AND QUOTING CHARACTERS

The quote character (backslash) and characters that delimit
syntactic units are not, generally, to be taken as data that
are part of the delimited or quoted unit(s). In particular,
the quotation-marks that define a quoted-string, the
parentheses that define a comment and the backslash that
quotes a following character are NOT part of the quoted-
string, comment or quoted character. A quotation-mark that is
to be part of a quoted-string, a parenthesis that is to be
part of a comment and a backslash that is to be part of either
must each be preceded by the quote-character backslash ("\").
Note that the syntax allows any character to be quoted within
a quoted-string or comment; however only certain characters
MUST be quoted to be included as data. These characters are
the ones that are not part of the alternate text group (i.e.,
ctext or qtext).

The one exception to this rule is that a single SPACE is
assumed to exist between contiguous words in a phrase, and
this interpretation is independent of the actual number of
LWSP-chars that the creator places between the words. To
include more than one SPACE, the creator must make the LWSP-
chars be part of a quoted-string.

Quotation marks that delimit a quoted string and backslashes
that quote the following character should NOT accompany the
quoted-string when the string is passed to processes that do
not interpret data according to this specification (e.g., mail
protocol servers).

3.4.5. QUOTED-STRINGS

Where permitted (i.e., in words in structured fields) quoted-
strings are treated as a single symbol. That is, a quoted-
string is equivalent to an atom, syntactically. If a quoted-
string is to be "folded" onto multiple lines, then the syntax
for folding must be adhered to. (See the "Lexical Analysis of


August 13, 1982 - 13 - RFC #822



Standard for ARPA Internet Text Messages


Messages" section on "Folding Long Header Fields" above, and
the section on "Case Independence" below.) Therefore, the
official semantics do not "see" any bare CRLFs that are in
quoted-strings; however particular parsing programs may wish
to note their presence. For such programs, it would be rea-
sonable to interpret a "CRLF LWSP-char" as being a CRLF which
is part of the quoted-string; i.e., the CRLF is kept and the
LWSP-char is discarded. Quoted CRLFs (i.e., a backslash fol-
lowed by a CR followed by a LF) are also subject to rules of
folding, but the presence of the quoting character (backslash)
explicitly indicates that the CRLF is data to the quoted
string. Stripping off the first following LWSP-char is also
appropriate when parsing quoted CRLFs.

3.4.6. BRACKETING CHARACTERS

There is one type of bracket which must occur in matched pairs
and may have pairs nested within each other:

o Parentheses ("(" and ")") are used to indicate com-
ments.

There are three types of brackets which must occur in matched
pairs, and which may NOT be nested:

o Colon/semi-colon (":" and ";") are used in address
specifications to indicate that the included list of
addresses are to be treated as a group.

o Angle brackets ("<" and ">") are generally used to
indicate the presence of a one machine-usable refer-
ence (e.g., delimiting mailboxes), possibly including
source-routing to the machine.

o Square brackets ("[" and "]") are used to indicate the
presence of a domain-literal, which the appropriate
name-domain is to use directly, bypassing normal
name-resolution mechanisms.

3.4.7. CASE INDEPENDENCE

Except as noted, alphabetic strings may be represented in any
combination of upper and lower case. The only syntactic units








August 13, 1982 - 14 - RFC #822



Standard for ARPA Internet Text Messages


which requires preservation of case information are:

- text
- qtext
- dtext
- ctext
- quoted-pair
- local-part, except "Postmaster"

When matching any other syntactic unit, case is to be ignored.
For example, the field-names "From", "FROM", "from", and even
"FroM" are semantically equal and should all be treated ident-
ically.

When generating these units, any mix of upper and lower case
alphabetic characters may be used. The case shown in this
specification is suggested for message-creating processes.

Note: The reserved local-part address unit, "Postmaster", is
an exception. When the value "Postmaster" is being
interpreted, it must be accepted in any mixture of
case, including "POSTMASTER", and "postmaster".

3.4.8. FOLDING LONG HEADER FIELDS

Each header field may be represented on exactly one line con-
sisting of the name of the field and its body, and terminated
by a CRLF; this is what the parser sees. For readability, the
field-body portion of long header fields may be "folded" onto
multiple lines of the actual field. "Long" is commonly inter-
preted to mean greater than 65 or 72 characters. The former
length serves as a limit, when the message is to be viewed on
most simple terminals which use simple display software; how-
ever, the limit is not imposed by this standard.

Note: Some display software often can selectively fold lines,
to suit the display terminal. In such cases, sender-
provided folding can interfere with the display
software.

3.4.9. BACKSPACE CHARACTERS

ASCII BS characters (Backspace, decimal 8) may be included in
texts and quoted-strings to effect overstriking. However, any
use of backspaces which effects an overstrike to the left of
the beginning of the text or quoted-string is prohibited.





August 13, 1982 - 15 - RFC #822



Standard for ARPA Internet Text Messages


3.4.10. NETWORK-SPECIFIC TRANSFORMATIONS

During transmission through heterogeneous networks, it may be
necessary to force data to conform to a network's local con-
ventions. For example, it may be required that a CR be fol-
lowed either by LF, making a CRLF, or by , if the CR is
to stand alone). Such transformations are reversed, when the
message exits that network.

When crossing network boundaries, the message should be
treated as passing through two modules. It will enter the
first module containing whatever network-specific transforma-
tions that were necessary to permit migration through the
"current" network. It then passes through the modules:

o Transformation Reversal

The "current" network's idiosyncracies are removed and
the message is returned to the canonical form speci-
fied in this standard.

o Transformation

The "next" network's local idiosyncracies are imposed
on the message.

------------------
From ==> | Remove Net-A |
Net-A | idiosyncracies |
------------------
||
\/
Conformance
with standard
||
\/
------------------
| Impose Net-B | ==> To
| idiosyncracies | Net-B
------------------











August 13, 1982 - 16 - RFC #822



Standard for ARPA Internet Text Messages


4. MESSAGE SPECIFICATION

4.1. SYNTAX

Note: Due to an artifact of the notational conventions, the syn-
tax indicates that, when present, some fields, must be in
a particular order. Header fields are NOT required to
occur in any particular order, except that the message
body must occur AFTER the headers. It is recommended
that, if present, headers be sent in the order "Return-
Path", "Received", "Date", "From", "Subject", "Sender",
"To", "cc", etc.

This specification permits multiple occurrences of most
fields. Except as noted, their interpretation is not
specified here, and their use is discouraged.

The following syntax for the bodies of various fields should
be thought of as describing each field body as a single long
string (or line). The "Lexical Analysis of Message" section on
"Long Header Fields", above, indicates how such long strings can
be represented on more than one line in the actual transmitted
message.

message = fields *( CRLF *text ) ; Everything after
; first null line
; is message body

fields = dates ; Creation time,
source ; author id & one
1*destination ; address required
*optional-field ; others optional

source = [ trace ] ; net traversals
originator ; original mail
[ resent ] ; forwarded

trace = return ; path to sender
1*received ; receipt tags

return = "Return-path" ":" route-addr ; return address

received = "Received" ":" ; one per relay
["from" domain] ; sending host
["by" domain] ; receiving host
["via" atom] ; physical path
*("with" atom) ; link/mail protocol
["id" msg-id] ; receiver msg id
["for" addr-spec] ; initial form


August 13, 1982 - 17 - RFC #822



Standard for ARPA Internet Text Messages


";" date-time ; time received

originator = authentic ; authenticated addr
[ "Reply-To" ":" 1#address] )

authentic = "From" ":" mailbox ; Single author
/ ( "Sender" ":" mailbox ; Actual submittor
"From" ":" 1#mailbox) ; Multiple authors
; or not sender

resent = resent-authentic
[ "Resent-Reply-To" ":" 1#address] )

resent-authentic =
= "Resent-From" ":" mailbox
/ ( "Resent-Sender" ":" mailbox
"Resent-From" ":" 1#mailbox )

dates = orig-date ; Original
[ resent-date ] ; Forwarded

orig-date = "Date" ":" date-time

resent-date = "Resent-Date" ":" date-time

destination = "To" ":" 1#address ; Primary
/ "Resent-To" ":" 1#address
/ "cc" ":" 1#address ; Secondary
/ "Resent-cc" ":" 1#address
/ "bcc" ":" #address ; Blind carbon
/ "Resent-bcc" ":" #address

optional-field =
/ "Message-ID" ":" msg-id
/ "Resent-Message-ID" ":" msg-id
/ "In-Reply-To" ":" *(phrase / msg-id)
/ "References" ":" *(phrase / msg-id)
/ "Keywords" ":" #phrase
/ "Subject" ":" *text
/ "Comments" ":" *text
/ "Encrypted" ":" 1#2word
/ extension-field ; To be defined
/ user-defined-field ; May be pre-empted

msg-id = "<" addr-spec ">" ; Unique message id






August 13, 1982 - 18 - RFC #822



Standard for ARPA Internet Text Messages


extension-field =
published as a formal extension to this
specification; none will have names beginning
with the string "X-">

user-defined-field =
in this specification or published as an
extension to this specification; names for
such fields must be unique and may be
pre-empted by published extensions>

4.2. FORWARDING

Some systems permit mail recipients to forward a message,
retaining the original headers, by adding some new fields. This
standard supports such a service, through the "Resent-" prefix to
field names.

Whenever the string "Resent-" begins a field name, the field
has the same semantics as a field whose name does not have the
prefix. However, the message is assumed to have been forwarded
by an original recipient who attached the "Resent-" field. This
new field is treated as being more recent than the equivalent,
original field. For example, the "Resent-From", indicates the
person that forwarded the message, whereas the "From" field indi-
cates the original author.

Use of such precedence information depends upon partici-
pants' communication needs. For example, this standard does not
dictate when a "Resent-From:" address should receive replies, in
lieu of sending them to the "From:" address.

Note: In general, the "Resent-" fields should be treated as con-
taining a set of information that is independent of the
set of original fields. Information for one set should
not automatically be taken from the other. The interpre-
tation of multiple "Resent-" fields, of the same type, is
undefined.

In the remainder of this specification, occurrence of legal
"Resent-" fields are treated identically with the occurrence of








August 13, 1982 - 19 - RFC #822



Standard for ARPA Internet Text Messages


fields whose names do not contain this prefix.

4.3. TRACE FIELDS

Trace information is used to provide an audit trail of mes-
sage handling. In addition, it indicates a route back to the
sender of the message.

The list of known "via" and "with" values are registered
with the Network Information Center, SRI International, Menlo
Park, California.

4.3.1. RETURN-PATH

This field is added by the final transport system that
delivers the message to its recipient. The field is intended
to contain definitive information about the address and route
back to the message's originator.

Note: The "Reply-To" field is added by the originator and
serves to direct replies, whereas the "Return-Path"
field is used to identify a path back to the origina-
tor.

While the syntax indicates that a route specification is
optional, every attempt should be made to provide that infor-
mation in this field.

4.3.2. RECEIVED

A copy of this field is added by each transport service that
relays the message. The information in the field can be quite
useful for tracing transport problems.

The names of the sending and receiving hosts and time-of-
receipt may be specified. The "via" parameter may be used, to
indicate what physical mechanism the message was sent over,
such as Arpanet or Phonenet, and the "with" parameter may be
used to indicate the mail-, or connection-, level protocol
that was used, such as the SMTP mail protocol, or X.25 tran-
sport protocol.

Note: Several "with" parameters may be included, to fully
specify the set of protocols that were used.

Some transport services queue mail; the internal message iden-
tifier that is assigned to the message may be noted, using the
"id" parameter. When the sending host uses a destination
address specification that the receiving host reinterprets, by


August 13, 1982 - 20 - RFC #822



Standard for ARPA Internet Text Messages


expansion or transformation, the receiving host may wish to
record the original specification, using the "for" parameter.
For example, when a copy of mail is sent to the member of a
distribution list, this parameter may be used to record the
original address that was used to specify the list.

4.4. ORIGINATOR FIELDS

The standard allows only a subset of the combinations possi-
ble with the From, Sender, Reply-To, Resent-From, Resent-Sender,
and Resent-Reply-To fields. The limitation is intentional.

4.4.1. FROM / RESENT-FROM

This field contains the identity of the person(s) who wished
this message to be sent. The message-creation process should
default this field to be a single, authenticated machine
address, indicating the AGENT (person, system or process)
entering the message. If this is not done, the "Sender" field
MUST be present. If the "From" field IS defaulted this way,
the "Sender" field is optional and is redundant with the
"From" field. In all cases, addresses in the "From" field
must be machine-usable (addr-specs) and may not contain named
lists (groups).

4.4.2. SENDER / RESENT-SENDER

This field contains the authenticated identity of the AGENT
(person, system or process) that sends the message. It is
intended for use when the sender is not the author of the mes-
sage, or to indicate who among a group of authors actually
sent the message. If the contents of the "Sender" field would
be completely redundant with the "From" field, then the
"Sender" field need not be present and its use is discouraged
(though still legal). In particular, the "Sender" field MUST
be present if it is NOT the same as the "From" Field.

The Sender mailbox specification includes a word sequence
which must correspond to a specific agent (i.e., a human user
or a computer program) rather than a standard address. This
indicates the expectation that the field will identify the
single AGENT (person, system, or process) responsible for
sending the mail and not simply include the name of a mailbox
from which the mail was sent. For example in the case of a
shared login name, the name, by itself, would not be adequate.
The local-part address unit, which refers to this agent, is
expected to be a computer system term, and not (for example) a
generalized person reference which can be used outside the
network text message context.


August 13, 1982 - 21 - RFC #822



Standard for ARPA Internet Text Messages


Since the critical function served by the "Sender" field is
identification of the agent responsible for sending mail and
since computer programs cannot be held accountable for their
behavior, it is strongly recommended that when a computer pro-
gram generates a message, the HUMAN who is responsible for
that program be referenced as part of the "Sender" field mail-
box specification.

4.4.3. REPLY-TO / RESENT-REPLY-TO

This field provides a general mechanism for indicating any
mailbox(es) to which responses are to be sent. Three typical
uses for this feature can be distinguished. In the first
case, the author(s) may not have regular machine-based mail-
boxes and therefore wish(es) to indicate an alternate machine
address. In the second case, an author may wish additional
persons to be made aware of, or responsible for, replies. A
somewhat different use may be of some help to "text message
teleconferencing" groups equipped with automatic distribution
services: include the address of that service in the "Reply-
To" field of all messages submitted to the teleconference;
then participants can "reply" to conference submissions to
guarantee the correct distribution of any submission of their
own.

Note: The "Return-Path" field is added by the mail transport
service, at the time of final deliver. It is intended
to identify a path back to the orginator of the mes-
sage. The "Reply-To" field is added by the message
originator and is intended to direct replies.

4.4.4. AUTOMATIC USE OF FROM / SENDER / REPLY-TO

For systems which automatically generate address lists for
replies to messages, the following recommendations are made:

o The "Sender" field mailbox should be sent notices of
any problems in transport or delivery of the original
messages. If there is no "Sender" field, then the
"From" field mailbox should be used.

o The "Sender" field mailbox should NEVER be used
automatically, in a recipient's reply message.

o If the "Reply-To" field exists, then the reply should
go to the addresses indicated in that field and not to
the address(es) indicated in the "From" field.




August 13, 1982 - 22 - RFC #822



Standard for ARPA Internet Text Messages


o If there is a "From" field, but no "Reply-To" field,
the reply should be sent to the address(es) indicated
in the "From" field.

Sometimes, a recipient may actually wish to communicate with
the person that initiated the message transfer. In such
cases, it is reasonable to use the "Sender" address.

This recommendation is intended only for automated use of
originator-fields and is not intended to suggest that replies
may not also be sent to other recipients of messages. It is
up to the respective mail-handling programs to decide what
additional facilities will be provided.

Examples are provided in Appendix A.

4.5. RECEIVER FIELDS

4.5.1. TO / RESENT-TO

This field contains the identity of the primary recipients of
the message.

4.5.2. CC / RESENT-CC

This field contains the identity of the secondary (informa-
tional) recipients of the message.

4.5.3. BCC / RESENT-BCC

This field contains the identity of additional recipients of
the message. The contents of this field are not included in
copies of the message sent to the primary and secondary reci-
pients. Some systems may choose to include the text of the
"Bcc" field only in the author(s)'s copy, while others may
also include it in the text sent to all those indicated in the
"Bcc" list.

4.6. REFERENCE FIELDS

4.6.1. MESSAGE-ID / RESENT-MESSAGE-ID

This field contains a unique identifier (the local-part
address unit) which refers to THIS version of THIS message.
The uniqueness of the message identifier is guaranteed by the
host which generates it. This identifier is intended to be
machine readable and not necessarily meaningful to humans. A
message identifier pertains to exactly one instantiation of a
particular message; subsequent revisions to the message should


August 13, 1982 - 23 - RFC #822



Standard for ARPA Internet Text Messages


each receive new message identifiers.

4.6.2. IN-REPLY-TO

The contents of this field identify previous correspon-
dence which this message answers. Note that if message iden-
tifiers are used in this field, they must use the msg-id
specification format.

4.6.3. REFERENCES

The contents of this field identify other correspondence
which this message references. Note that if message identif-
iers are used, they must use the msg-id specification format.

4.6.4. KEYWORDS

This field contains keywords or phrases, separated by
commas.

4.7. OTHER FIELDS

4.7.1. SUBJECT

This is intended to provide a summary, or indicate the
nature, of the message.

4.7.2. COMMENTS

Permits adding text comments onto the message without
disturbing the contents of the message's body.

4.7.3. ENCRYPTED

Sometimes, data encryption is used to increase the
privacy of message contents. If the body of a message has
been encrypted, to keep its contents private, the "Encrypted"
field can be used to note the fact and to indicate the nature
of the encryption. The first parameter indicates the
software used to encrypt the body, and the second, optional
is intended to aid the recipient in selecting the
proper decryption key. This code word may be viewed as an
index to a table of keys held by the recipient.

Note: Unfortunately, headers must contain envelope, as well
as contents, information. Consequently, it is neces-
sary that they remain unencrypted, so that mail tran-
sport services may access them. Since names,
addresses, and "Subject" field contents may contain


August 13, 1982 - 24 - RFC #822



Standard for ARPA Internet Text Messages


sensitive information, this requirement limits total
message privacy.

Names of encryption software are registered with the Net-
work Information Center, SRI International, Menlo Park, Cali-
fornia.

4.7.4. EXTENSION-FIELD

A limited number of common fields have been defined in
this document. As network mail requirements dictate, addi-
tional fields may be standardized. To provide user-defined
fields with a measure of safety, in name selection, such
extension-fields will never have names that begin with the
string "X-".

Names of Extension-fields are registered with the Network
Information Center, SRI International, Menlo Park, California.

4.7.5. USER-DEFINED-FIELD

Individual users of network mail are free to define and
use additional header fields. Such fields must have names
which are not already used in the current specification or in
any definitions of extension-fields, and the overall syntax of
these user-defined-fields must conform to this specification's
rules for delimiting and folding fields. Due to the
extension-field publishing process, the name of a user-
defined-field may be pre-empted

Note: The prefatory string "X-" will never be used in the
names of Extension-fields. This provides user-defined
fields with a protected set of names.


















August 13, 1982 - 25 - RFC #822



Standard for ARPA Internet Text Messages


5. DATE AND TIME SPECIFICATION

5.1. SYNTAX

date-time = [ day "," ] date time ; dd mm yy
; hh:mm:ss zzz

day = "Mon" / "Tue" / "Wed" / "Thu"
/ "Fri" / "Sat" / "Sun"

date = 1*2DIGIT month 2DIGIT ; day month year
; e.g. 20 Jun 82

month = "Jan" / "Feb" / "Mar" / "Apr"
/ "May" / "Jun" / "Jul" / "Aug"
/ "Sep" / "Oct" / "Nov" / "Dec"

time = hour zone ; ANSI and Military

hour = 2DIGIT ":" 2DIGIT [":" 2DIGIT]
; 00:00:00 - 23:59:59

zone = "UT" / "GMT" ; Universal Time
; North American : UT
/ "EST" / "EDT" ; Eastern: - 5/ - 4
/ "CST" / "CDT" ; Central: - 6/ - 5
/ "MST" / "MDT" ; Mountain: - 7/ - 6
/ "PST" / "PDT" ; Pacific: - 8/ - 7
/ 1ALPHA ; Military: Z = UT;
; A:-1; (J not used)
; M:-12; N:+1; Y:+12
/ ( ("+" / "-") 4DIGIT ) ; Local differential
; hours+min. (HHMM)

5.2. SEMANTICS

If included, day-of-week must be the day implied by the date
specification.

Time zone may be indicated in several ways. "UT" is Univer-
sal Time (formerly called "Greenwich Mean Time"); "GMT" is per-
mitted as a reference to Universal Time. The military standard
uses a single character for each zone. "Z" is Universal Time.
"A" indicates one hour earlier, and "M" indicates 12 hours ear-
lier; "N" is one hour later, and "Y" is 12 hours later. The
letter "J" is not used. The other remaining two forms are taken
from ANSI standard X3.51-1975. One allows explicit indication of
the amount of offset from UT; the other uses common 3-character
strings for indicating time zones in North America.


August 13, 1982 - 26 - RFC #822



Standard for ARPA Internet Text Messages


6. ADDRESS SPECIFICATION

6.1. SYNTAX

address = mailbox ; one addressee
/ group ; named list

group = phrase ":" [#mailbox] ";"

mailbox = addr-spec ; simple address
/ phrase route-addr ; name & addr-spec

route-addr = "<" [route] addr-spec ">"

route = 1#("@" domain) ":" ; path-relative

addr-spec = local-part "@" domain ; global address

local-part = word *("." word) ; uninterpreted
; case-preserved

domain = sub-domain *("." sub-domain)

sub-domain = domain-ref / domain-literal

domain-ref = atom ; symbolic reference

6.2. SEMANTICS

A mailbox receives mail. It is a conceptual entity which
does not necessarily pertain to file storage. For example, some
sites may choose to print mail on their line printer and deliver
the output to the addressee's desk.

A mailbox specification comprises a person, system or pro-
cess name reference, a domain-dependent string, and a name-domain
reference. The name reference is optional and is usually used to
indicate the human name of a recipient. The name-domain refer-
ence specifies a sequence of sub-domains. The domain-dependent
string is uninterpreted, except by the final sub-domain; the rest
of the mail service merely transmits it as a literal string.

6.2.1. DOMAINS

A name-domain is a set of registered (mail) names. A name-
domain specification resolves to a subordinate name-domain
specification or to a terminal domain-dependent string.
Hence, domain specification is extensible, permitting any
number of registration levels.


August 13, 1982 - 27 - RFC #822



Standard for ARPA Internet Text Messages


Name-domains model a global, logical, hierarchical addressing
scheme. The model is logical, in that an address specifica-
tion is related to name registration and is not necessarily
tied to transmission path. The model's hierarchy is a
directed graph, called an in-tree, such that there is a single
path from the root of the tree to any node in the hierarchy.
If more than one path actually exists, they are considered to
be different addresses.

The root node is common to all addresses; consequently, it is
not referenced. Its children constitute "top-level" name-
domains. Usually, a service has access to its own full domain
specification and to the names of all top-level name-domains.

The "top" of the domain addressing hierarchy -- a child of the
root -- is indicated by the right-most field, in a domain
specification. Its child is specified to the left, its child
to the left, and so on.

Some groups provide formal registration services; these con-
stitute name-domains that are independent logically of
specific machines. In addition, networks and machines impli-
citly compose name-domains, since their membership usually is
registered in name tables.

In the case of formal registration, an organization implements
a (distributed) data base which provides an address-to-route
mapping service for addresses of the form:

[email protected]

Note that "organization" is a logical entity, separate from
any particular communication network.

A mechanism for accessing "organization" is universally avail-
able. That mechanism, in turn, seeks an instantiation of the
registry; its location is not indicated in the address specif-
ication. It is assumed that the system which operates under
the name "organization" knows how to find a subordinate regis-
try. The registry will then use the "person" string to deter-
mine where to send the mail specification.

The latter, network-oriented case permits simple, direct,
attachment-related address specification, such as:

[email protected]

Once the network is accessed, it is expected that a message
will go directly to the host and that the host will resolve


August 13, 1982 - 28 - RFC #822



Standard for ARPA Internet Text Messages


the user name, placing the message in the user's mailbox.

6.2.2. ABBREVIATED DOMAIN SPECIFICATION

Since any number of levels is possible within the domain
hierarchy, specification of a fully qualified address can
become inconvenient. This standard permits abbreviated domain
specification, in a special case:

For the address of the sender, call the left-most
sub-domain Level N. In a header address, if all of
the sub-domains above (i.e., to the right of) Level N
are the same as those of the sender, then they do not
have to appear in the specification. Otherwise, the
address must be fully qualified.

This feature is subject to approval by local sub-
domains. Individual sub-domains may require their
member systems, which originate mail, to provide full
domain specification only. When permitted, abbrevia-
tions may be present only while the message stays
within the sub-domain of the sender.

Use of this mechanism requires the sender's sub-domain
to reserve the names of all top-level domains, so that
full specifications can be distinguished from abbrevi-
ated specifications.

For example, if a sender's address is:

[email protected]

and one recipient's address is:

[email protected]

and another's is:

[email protected]

then ".registry-1.organization-X" need not be specified in the
the message, but "registry-C.registry-2" DOES have to be
specified. That is, the first two addresses may be abbrevi-
ated, but the third address must be fully specified.

When a message crosses a domain boundary, all addresses must
be specified in the full format, ending with the top-level
name-domain in the right-most field. It is the responsibility
of mail forwarding services to ensure that addresses conform


August 13, 1982 - 29 - RFC #822



Standard for ARPA Internet Text Messages


with this requirement. In the case of abbreviated addresses,
the relaying service must make the necessary expansions. It
should be noted that it often is difficult for such a service
to locate all occurrences of address abbreviations. For exam-
ple, it will not be possible to find such abbreviations within
the body of the message. The "Return-Path" field can aid
recipients in recovering from these errors.

Note: When passing any portion of an addr-spec onto a process
which does not interpret data according to this stan-
dard (e.g., mail protocol servers). There must be NO
LWSP-chars preceding or following the at-sign or any
delimiting period ("."), such as shown in the above
examples, and only ONE SPACE between contiguous
s.

6.2.3. DOMAIN TERMS

A domain-ref must be THE official name of a registry, network,
or host. It is a symbolic reference, within a name sub-
domain. At times, it is necessary to bypass standard mechan-
isms for resolving such references, using more primitive
information, such as a network host address rather than its
associated host name.

To permit such references, this standard provides the domain-
literal construct. Its contents must conform with the needs
of the sub-domain in which it is interpreted.

Domain-literals which refer to domains within the ARPA Inter-
net specify 32-bit Internet addresses, in four 8-bit fields
noted in decimal, as described in Request for Comments #820,
"Assigned Numbers." For example:

[10.0.3.19]

Note: THE USE OF DOMAIN-LITERALS IS STRONGLY DISCOURAGED. It
is permitted only as a means of bypassing temporary
system limitations, such as name tables which are not
complete.

The names of "top-level" domains, and the names of domains
under in the ARPA Internet, are registered with the Network
Information Center, SRI International, Menlo Park, California.

6.2.4. DOMAIN-DEPENDENT LOCAL STRING

The local-part of an addr-spec in a mailbox specification
(i.e., the host's name for the mailbox) is understood to be


August 13, 1982 - 30 - RFC #822



Standard for ARPA Internet Text Messages


whatever the receiving mail protocol server allows. For exam-
ple, some systems do not understand mailbox references of the
form "P. D. Q. Bach", but others do.

This specification treats periods (".") as lexical separators.
Hence, their presence in local-parts which are not quoted-
strings, is detected. However, such occurrences carry NO
semantics. That is, if a local-part has periods within it, an
address parser will divide the local-part into several tokens,
but the sequence of tokens will be treated as one uninter-
preted unit. The sequence will be re-assembled, when the
address is passed outside of the system such as to a mail pro-
tocol service.

For example, the address:

[email protected]

is legal and does not require the local-part to be surrounded
with quotation-marks. (However, "First Last" DOES require
quoting.) The local-part of the address, when passed outside
of the mail system, within the Registry.Org domain, is
"First.Last", again without quotation marks.

6.2.5. BALANCING LOCAL-PART AND DOMAIN

In some cases, the boundary between local-part and domain can
be flexible. The local-part may be a simple string, which is
used for the final determination of the recipient's mailbox.
All other levels of reference are, therefore, part of the
domain.

For some systems, in the case of abbreviated reference to the
local and subordinate sub-domains, it may be possible to
specify only one reference within the domain part and place
the other, subordinate name-domain references within the
local-part. This would appear as:

[email protected]

Such a specification would be acceptable to address parsers
which conform to RFC #733, but do not support this newer
Internet standard. While contrary to the intent of this stan-
dard, the form is legal.

Also, some sub-domains have a specification syntax which does
not conform to this standard. For example:

[email protected]


August 13, 1982 - 31 - RFC #822



Standard for ARPA Internet Text Messages


uses a different parsing sequence for local-part than for
domain.

Note: As a rule, the domain specification should contain
fields which are encoded according to the syntax of
this standard and which contain generally-standardized
information. The local-part specification should con-
tain only that portion of the address which deviates
from the form or intention of the domain field.

6.2.6. MULTIPLE MAILBOXES

An individual may have several mailboxes and wish to receive
mail at whatever mailbox is convenient for the sender to
access. This standard does not provide a means of specifying
"any member of" a list of mailboxes.

A set of individuals may wish to receive mail as a single unit
(i.e., a distribution list). The construct permits
specification of such a list. Recipient mailboxes are speci-
fied within the bracketed part (":" - ";"). A copy of the
transmitted message is to be sent to each mailbox listed.
This standard does not permit recursive specification of
groups within groups.

While a list must be named, it is not required that the con-
tents of the list be included. In this case, the

serves only as an indication of group distribution and would
appear in the form:

name:;

Some mail services may provide a group-list distribution
facility, accepting a single mailbox reference, expanding it
to the full distribution list, and relaying the mail to the
list's members. This standard provides no additional syntax
for indicating such a service. Using the address
alternative, while listing one mailbox in it, can mean either
that the mailbox reference will be expanded to a list or that
there is a group with one member.

6.2.7. EXPLICIT PATH SPECIFICATION

At times, a message originator may wish to indicate the
transmission path that a message should follow. This is
called source routing. The normal addressing scheme, used in
an addr-spec, is carefully separated from such information;
the portion of a route-addr is provided for such occa-
sions. It specifies the sequence of hosts and/or transmission


August 13, 1982 - 32 - RFC #822



Standard for ARPA Internet Text Messages


services that are to be traversed. Both domain-refs and
domain-literals may be used.

Note: The use of source routing is discouraged. Unless the
sender has special need of path restriction, the choice
of transmission route should be left to the mail tran-
sport service.

6.3. RESERVED ADDRESS

It often is necessary to send mail to a site, without know-
ing any of its valid addresses. For example, there may be mail
system dysfunctions, or a user may wish to find out a person's
correct address, at that site.

This standard specifies a single, reserved mailbox address
(local-part) which is to be valid at each site. Mail sent to
that address is to be routed to a person responsible for the
site's mail system or to a person with responsibility for general
site operation. The name of the reserved local-part address is:

Postmaster

so that "[email protected]" is required to be valid.

Note: This reserved local-part must be matched without sensi-
tivity to alphabetic case, so that "POSTMASTER", "postmas-
ter", and even "poStmASteR" is to be accepted.























August 13, 1982 - 33 - RFC #822



Standard for ARPA Internet Text Messages


7. BIBLIOGRAPHY


ANSI. "USA Standard Code for Information Interchange," X3.4.
American National Standards Institute: New York (1968). Also
in: Feinler, E. and J. Postel, eds., "ARPANET Protocol Hand-
book", NIC 7104.

ANSI. "Representations of Universal Time, Local Time Differen-
tials, and United States Time Zone References for Information
Interchange," X3.51-1975. American National Standards Insti-
tute: New York (1975).

Bemer, R.W., "Time and the Computer." In: Interface Age (Feb.
1979).

Bennett, C.J. "JNT Mail Protocol". Joint Network Team, Ruther-
ford and Appleton Laboratory: Didcot, England.

Bhushan, A.K., Pogran, K.T., Tomlinson, R.S., and White, J.E.
"Standardizing Network Mail Headers," ARPANET Request for
Comments No. 561, Network Information Center No. 18516; SRI
International: Menlo Park (September 1973).

Birrell, A.D., Levin, R., Needham, R.M., and Schroeder, M.D.
"Grapevine: An Exercise in Distributed Computing," Communica-
tions of the ACM 25, 4 (April 1982), 260-274.

Crocker, D.H., Vittal, J.J., Pogran, K.T., Henderson, D.A.
"Standard for the Format of ARPA Network Text Message,"
ARPANET Request for Comments No. 733, Network Information
Center No. 41952. SRI International: Menlo Park (November
1977).

Feinler, E.J. and Postel, J.B. ARPANET Protocol Handbook, Net-
work Information Center No. 7104 (NTIS AD A003890). SRI
International: Menlo Park (April 1976).

Harary, F. "Graph Theory". Addison-Wesley: Reading, Mass.
(1969).

Levin, R. and Schroeder, M. "Transport of Electronic Messages
through a Network," TeleInformatics 79, pp. 29-33. North
Holland (1979). Also as Xerox Palo Alto Research Center
Technical Report CSL-79-4.

Myer, T.H. and Henderson, D.A. "Message Transmission Protocol,"
ARPANET Request for Comments, No. 680, Network Information
Center No. 32116. SRI International: Menlo Park (1975).


August 13, 1982 - 34 - RFC #822



Standard for ARPA Internet Text Messages


NBS. "Specification of Message Format for Computer Based Message
Systems, Recommended Federal Information Processing Standard."
National Bureau of Standards: Gaithersburg, Maryland
(October 1981).

NIC. Internet Protocol Transition Workbook. Network Information
Center, SRI-International, Menlo Park, California (March
1982).

Oppen, D.C. and Dalal, Y.K. "The Clearinghouse: A Decentralized
Agent for Locating Named Objects in a Distributed Environ-
ment," OPD-T8103. Xerox Office Products Division: Palo Alto,
CA. (October 1981).

Postel, J.B. "Assigned Numbers," ARPANET Request for Comments,
No. 820. SRI International: Menlo Park (August 1982).

Postel, J.B. "Simple Mail Transfer Protocol," ARPANET Request
for Comments, No. 821. SRI International: Menlo Park (August
1982).

Shoch, J.F. "Internetwork naming, addressing and routing," in
Proc. 17th IEEE Computer Society International Conference, pp.
72-79, Sept. 1978, IEEE Cat. No. 78 CH 1388-8C.

Su, Z. and Postel, J. "The Domain Naming Convention for Internet
User Applications," ARPANET Request for Comments, No. 819.
SRI International: Menlo Park (August 1982).























August 13, 1982 - 35 - RFC #822



Standard for ARPA Internet Text Messages


APPENDIX


A. EXAMPLES

A.1. ADDRESSES

A.1.1. Alfred Neuman

A.1.2. [email protected]

These two "Alfred Neuman" examples have identical seman-
tics, as far as the operation of the local host's mail sending
(distribution) program (also sometimes called its "mailer")
and the remote host's mail protocol server are concerned. In
the first example, the "Alfred Neuman" is ignored by the
mailer, as "[email protected]" completely specifies the reci-
pient. The second example contains no superfluous informa-
tion, and, again, "[email protected]" is the intended reci-
pient.

Note: When the message crosses name-domain boundaries, then
these specifications must be changed, so as to indicate
the remainder of the hierarchy, starting with the top
level.

A.1.3. "George, Ted"

This form might be used to indicate that a single mailbox
is shared by several users. The quoted string is ignored by
the originating host's mailer, because "[email protected]"
completely specifies the destination mailbox.

A.1.4. Wilt . (the Stilt) [email protected]

The "(the Stilt)" is a comment, which is NOT included in
the destination mailbox address handed to the originating
system's mailer. The local-part of the address is the string
"Wilt.Chamberlain", with NO space between the first and second
words.

A.1.5. Address Lists

Gourmets: Pompous Person ,
[email protected], Galloping [email protected]
ANT.Down-Under (Australian National Television),
[email protected];,
Cruisers: [email protected], [email protected];,
[email protected]


August 13, 1982 - 36 - RFC #822



Standard for ARPA Internet Text Messages


This group list example points out the use of comments and the
mixing of addresses and groups.

A.2. ORIGINATOR ITEMS

A.2.1. Author-sent

George Jones logs into his host as "Jones". He sends
mail himself.

From: [email protected]

or

From: George Jones

A.2.2. Secretary-sent

George Jones logs in as Jones on his host. His secre-
tary, who logs in as Secy sends mail for him. Replies to the
mail should go to George.

From: George Jones
Sender: [email protected]

A.2.3. Secretary-sent, for user of shared directory

George Jones' secretary sends mail for George. Replies
should go to George.

From: George Jones
Sender: [email protected]

Note that there need not be a space between "Jones" and the
"<", but adding a space enhances readability (as is the case
in other examples.


A.2.4. Committee activity, with one author

George is a member of a committee. He wishes to have any
replies to his message go to all committee members.

From: George Jones
Sender: [email protected]
Reply-To: The Committee: [email protected],
[email protected],
[email protected];

Note that if George had not included himself in the


August 13, 1982 - 37 - RFC #822



Standard for ARPA Internet Text Messages


enumeration of The Committee, he would not have gotten an
implicit reply; the presence of the "Reply-to" field SUPER-
SEDES the sending of a reply to the person named in the "From"
field.

A.2.5. Secretary acting as full agent of author

George Jones asks his secretary ([email protected]) to send a
message for him in his capacity as Group. He wants his secre-
tary to handle all replies.

From: George Jones
Sender: [email protected]
Reply-To: [email protected]

A.2.6. Agent for user without online mailbox

A friend of George's, Sarah, is visiting. George's
secretary sends some mail to a friend of Sarah in computer-
land. Replies should go to George, whose mailbox is Jones at
Registry.

From: Sarah Friendly
Sender: Secy-Name
Reply-To: [email protected]

A.2.7. Agent for member of a committee

George's secretary sends out a message which was authored
jointly by all the members of a committee. Note that the name
of the committee cannot be specified, since names are
not permitted in the From field.

From: [email protected],
[email protected],
[email protected]
Sender: [email protected]














August 13, 1982 - 38 - RFC #822



Standard for ARPA Internet Text Messages


A.3. COMPLETE HEADERS

A.3.1. Minimum required

Date: 26 Aug 76 1429 EDT Date: 26 Aug 76 1429 EDT
From: [email protected] or From: [email protected]
Bcc: To: [email protected]

Note that the "Bcc" field may be empty, while the "To" field
is required to have at least one address.

A.3.2. Using some of the additional fields

Date: 26 Aug 76 1430 EDT
From: George Jones
Sender: [email protected]
To: "Al Neuman"@Mad-Host,
[email protected]
Message-ID:

A.3.3. About as complex as you're going to get

Date : 27 Aug 76 0932 PDT
From : Ken Davis
Subject : Re: The Syntax in the RFC
Sender : [email protected]
Reply-To : [email protected]
To : George Jones ,
[email protected]
cc : Important folk:
Tom Softwood ,
"Sam Irving"@Other-Host;,
Standard Distribution:
/main/davis/people/[email protected],
"standard.dist.3"@Tops-20-Host>;
Comment : Sam is away on business. He asked me to handle
his mail for him. He'll be able to provide a
more accurate explanation when he returns
next week.
In-Reply-To: , George's message
X-Special-action: This is a sample of user-defined field-
names. There could also be a field-name
"Special-action", but its name might later be
preempted
Message-ID: <[email protected]>






August 13, 1982 - 39 - RFC #822



Standard for ARPA Internet Text Messages


B. SIMPLE FIELD PARSING

Some mail-reading software systems may wish to perform only
minimal processing, ignoring the internal syntax of structured
field-bodies and treating them the same as unstructured-field-
bodies. Such software will need only to distinguish:

o Header fields from the message body,

o Beginnings of fields from lines which continue fields,

o Field-names from field-contents.

The abbreviated set of syntactic rules which follows will
suffice for this purpose. It describes a limited view of mes-
sages and is a subset of the syntactic rules provided in the main
part of this specification. One small exception is that the con-
tents of field-bodies consist only of text:

B.1. SYNTAX


message = *field *(CRLF *text)

field = field-name ":" [field-body] CRLF

field-name = 1*

field-body = *text [CRLF LWSP-char field-body]


B.2. SEMANTICS

Headers occur before the message body and are terminated by
a null line (i.e., two contiguous CRLFs).

A line which continues a header field begins with a SPACE or
HTAB character, while a line beginning a field starts with a
printable character which is not a colon.

A field-name consists of one or more printable characters
(excluding colon, space, and control-characters). A field-name
MUST be contained on one line. Upper and lower case are not dis-
tinguished when comparing field-names.







August 13, 1982 - 40 - RFC #822



Standard for ARPA Internet Text Messages


C. DIFFERENCES FROM RFC #733

The following summarizes the differences between this stan-
dard and the one specified in Arpanet Request for Comments #733,
"Standard for the Format of ARPA Network Text Messages". The
differences are listed in the order of their occurrence in the
current specification.

C.1. FIELD DEFINITIONS

C.1.1. FIELD NAMES

These now must be a sequence of printable characters. They
may not contain any LWSP-chars.

C.2. LEXICAL TOKENS

C.2.1. SPECIALS

The characters period ("."), left-square bracket ("["), and
right-square bracket ("]") have been added. For presentation
purposes, and when passing a specification to a system that
does not conform to this standard, periods are to be contigu-
ous with their surrounding lexical tokens. No linear-white-
space is permitted between them. The presence of one LWSP-
char between other tokens is still directed.

C.2.2. ATOM

Atoms may not contain SPACE.

C.2.3. SPECIAL TEXT

ctext and qtext have had backslash ("\") added to the list of
prohibited characters.

C.2.4. DOMAINS

The lexical tokens and have been
added.

C.3. MESSAGE SPECIFICATION

C.3.1. TRACE

The "Return-path:" and "Received:" fields have been specified.





August 13, 1982 - 41 - RFC #822



Standard for ARPA Internet Text Messages


C.3.2. FROM

The "From" field must contain machine-usable addresses (addr-
spec). Multiple addresses may be specified, but named-lists
(groups) may not.

C.3.3. RESENT

The meta-construct of prefacing field names with the string
"Resent-" has been added, to indicate that a message has been
forwarded by an intermediate recipient.

C.3.4. DESTINATION

A message must contain at least one destination address field.
"To" and "CC" are required to contain at least one address.

C.3.5. IN-REPLY-TO

The field-body is no longer a comma-separated list, although a
sequence is still permitted.

C.3.6. REFERENCE

The field-body is no longer a comma-separated list, although a
sequence is still permitted.

C.3.7. ENCRYPTED

A field has been specified that permits senders to indicate
that the body of a message has been encrypted.

C.3.8. EXTENSION-FIELD

Extension fields are prohibited from beginning with the char-
acters "X-".

C.4. DATE AND TIME SPECIFICATION

C.4.1. SIMPLIFICATION

Fewer optional forms are permitted and the list of three-
letter time zones has been shortened.

C.5. ADDRESS SPECIFICATION






August 13, 1982 - 42 - RFC #822



Standard for ARPA Internet Text Messages


C.5.1. ADDRESS

The use of quoted-string, and the ":"-atom-":" construct, have
been removed. An address now is either a single mailbox
reference or is a named list of addresses. The latter indi-
cates a group distribution.

C.5.2. GROUPS

Group lists are now required to to have a name. Group lists
may not be nested.

C.5.3. MAILBOX

A mailbox specification may indicate a person's name, as
before. Such a named list no longer may specify multiple
mailboxes and may not be nested.

C.5.4. ROUTE ADDRESSING

Addresses now are taken to be absolute, global specifications,
independent of transmission paths. The construct has
been provided, to permit explicit specification of transmis-
sion path. RFC #733's use of multiple at-signs ("@") was
intended as a general syntax for indicating routing and/or
hierarchical addressing. The current standard separates these
specifications and only one at-sign is permitted.

C.5.5. AT-SIGN

The string " at " no longer is used as an address delimiter.
Only at-sign ("@") serves the function.

C.5.6. DOMAINS

Hierarchical, logical name-domains have been added.

C.6. RESERVED ADDRESS

The local-part "Postmaster" has been reserved, so that users can
be guaranteed at least one valid address at a site.










August 13, 1982 - 43 - RFC #822



Standard for ARPA Internet Text Messages


D. ALPHABETICAL LISTING OF SYNTAX RULES

address = mailbox ; one addressee
/ group ; named list
addr-spec = local-part "@" domain ; global address
ALPHA =
; (101-132, 65.- 90.)
; (141-172, 97.-122.)
atom = 1*
authentic = "From" ":" mailbox ; Single author
/ ( "Sender" ":" mailbox ; Actual submittor
"From" ":" 1#mailbox) ; Multiple authors
; or not sender
CHAR = ; ( 0-177, 0.-127.)
comment = "(" *(ctext / quoted-pair / comment) ")"
CR = ; ( 15, 13.)
CRLF = CR LF
ctext = may be folded
")", "\" & CR, & including
linear-white-space>
CTL = character and DEL> ; ( 177, 127.)
date = 1*2DIGIT month 2DIGIT ; day month year
; e.g. 20 Jun 82
dates = orig-date ; Original
[ resent-date ] ; Forwarded
date-time = [ day "," ] date time ; dd mm yy
; hh:mm:ss zzz
day = "Mon" / "Tue" / "Wed" / "Thu"
/ "Fri" / "Sat" / "Sun"
delimiters = specials / linear-white-space / comment
destination = "To" ":" 1#address ; Primary
/ "Resent-To" ":" 1#address
/ "cc" ":" 1#address ; Secondary
/ "Resent-cc" ":" 1#address
/ "bcc" ":" #address ; Blind carbon
/ "Resent-bcc" ":" #address
DIGIT = ; ( 60- 71, 48.- 57.)
domain = sub-domain *("." sub-domain)
domain-literal = "[" *(dtext / quoted-pair) "]"
domain-ref = atom ; symbolic reference
dtext = may be folded
"]", "\" & CR, & including
linear-white-space>
extension-field =
published as a formal extension to this
specification; none will have names beginning
with the string "X-">


August 13, 1982 - 44 - RFC #822



Standard for ARPA Internet Text Messages


field = field-name ":" [ field-body ] CRLF
fields = dates ; Creation time,
source ; author id & one
1*destination ; address required
*optional-field ; others optional
field-body = field-body-contents
[CRLF LWSP-char field-body]
field-body-contents =
defined in the following sections, and consisting
of combinations of atom, quoted-string, and
specials tokens, or else consisting of texts>
field-name = 1*
group = phrase ":" [#mailbox] ";"
hour = 2DIGIT ":" 2DIGIT [":" 2DIGIT]
; 00:00:00 - 23:59:59
HTAB = ; ( 11, 9.)
LF = ; ( 12, 10.)
linear-white-space = 1*([CRLF] LWSP-char) ; semantics = SPACE
; CRLF => folding
local-part = word *("." word) ; uninterpreted
; case-preserved
LWSP-char = SPACE / HTAB ; semantics = SPACE
mailbox = addr-spec ; simple address
/ phrase route-addr ; name & addr-spec
message = fields *( CRLF *text ) ; Everything after
; first null line
; is message body
month = "Jan" / "Feb" / "Mar" / "Apr"
/ "May" / "Jun" / "Jul" / "Aug"
/ "Sep" / "Oct" / "Nov" / "Dec"
msg-id = "<" addr-spec ">" ; Unique message id
optional-field =
/ "Message-ID" ":" msg-id
/ "Resent-Message-ID" ":" msg-id
/ "In-Reply-To" ":" *(phrase / msg-id)
/ "References" ":" *(phrase / msg-id)
/ "Keywords" ":" #phrase
/ "Subject" ":" *text
/ "Comments" ":" *text
/ "Encrypted" ":" 1#2word
/ extension-field ; To be defined
/ user-defined-field ; May be pre-empted
orig-date = "Date" ":" date-time
originator = authentic ; authenticated addr
[ "Reply-To" ":" 1#address] )
phrase = 1*word ; Sequence of words




August 13, 1982 - 45 - RFC #822



Standard for ARPA Internet Text Messages


qtext = , ; => may be folded
"\" & CR, and including
linear-white-space>
quoted-pair = "\" CHAR ; may quote any char
quoted-string = <"> *(qtext/quoted-pair) <">; Regular qtext or
; quoted chars.
received = "Received" ":" ; one per relay
["from" domain] ; sending host
["by" domain] ; receiving host
["via" atom] ; physical path
*("with" atom) ; link/mail protocol
["id" msg-id] ; receiver msg id
["for" addr-spec] ; initial form
";" date-time ; time received

resent = resent-authentic
[ "Resent-Reply-To" ":" 1#address] )
resent-authentic =
= "Resent-From" ":" mailbox
/ ( "Resent-Sender" ":" mailbox
"Resent-From" ":" 1#mailbox )
resent-date = "Resent-Date" ":" date-time
return = "Return-path" ":" route-addr ; return address
route = 1#("@" domain) ":" ; path-relative
route-addr = "<" [route] addr-spec ">"
source = [ trace ] ; net traversals
originator ; original mail
[ resent ] ; forwarded
SPACE = ; ( 40, 32.)
specials = "(" / ")" / "<" / ">" / "@" ; Must be in quoted-
/ "," / ";" / ":" / "\" / <"> ; string, to use
/ "." / "[" / "]" ; within a word.
sub-domain = domain-ref / domain-literal
text = atoms, specials,
CR & bare LF, but NOT ; comments and
including CRLF> ; quoted-strings are
; NOT recognized.
time = hour zone ; ANSI and Military
trace = return ; path to sender
1*received ; receipt tags
user-defined-field =
in this specification or published as an
extension to this specification; names for
such fields must be unique and may be
pre-empted by published extensions>
word = atom / quoted-string




August 13, 1982 - 46 - RFC #822



Standard for ARPA Internet Text Messages


zone = "UT" / "GMT" ; Universal Time
; North American : UT
/ "EST" / "EDT" ; Eastern: - 5/ - 4
/ "CST" / "CDT" ; Central: - 6/ - 5
/ "MST" / "MDT" ; Mountain: - 7/ - 6
/ "PST" / "PDT" ; Pacific: - 8/ - 7
/ 1ALPHA ; Military: Z = UT;
<"> = ; ( 42, 34.)






































August 13, 1982 - 47 - RFC #822



 December 12, 2017  Add comments

Leave a Reply