Category : OS/2 Files
Archive   : PSPICEP1.ZIP
Filename : EXAMPLE1.OUT

 
Output of file : EXAMPLE1.OUT contained in archive : PSPICEP1.ZIP

******* 01/22/90 ******* Evaluation PSpice (January 1990) ******* 11:19:54 *******


EXAMPLE1 - An Illustration of PSpice Capabilities


**** CIRCUIT DESCRIPTION


****************************************************************************



*
* This circuit, a differential pair, shows many of the capabilities of PSpice.
* It creates a large amount of output for such a small circuit. Normally,
* only a few kinds of analysis, such as transient analysis, would be run.
*
* This command sets options for the run.
.OPT ACCT NOMOD NOPAGE RELTOL=.001

* Sets the width of the output to 80 columns.
.WIDTH OUT=80

* Sets the temperature for the run to 35 degrees celsius.
.TEMP 35

* This command does a DC sweep. The voltage source VIN is swept from
* -0.125 volts to 0.125 volts in steps of 0.005 volts. The non-linear
* device equations are used.
.DC VIN -0.125 0.125 0.005

* There is no command to do a small-signal bias point calculation. It
* is done automatically after the DC sweep is finished. The non-linear
* device equations are used to find the bias point. Then, the linearized,
* small-signal equivalent circuit at the bias point is saved for the .TF,
* .SENS, .AC, and .NOISE analysis. This command prints out the small-
* signal parameters for each device.
.OP

* This command does a small-signal transfer function calculation assuming
* VIN is the input and V(5), the voltage at node 5, is the output.
.TF V(5) VIN

* This does an AC analysis. The real and imaginary response of the circuit
* is calculated as the inputs are swept from 100 kilohertz to 10 gigahertz
* by decades with 10 points per decade. The only AC input this circuit has
* is VIN. This is a linear analysis.
.AC DEC 10 100KHZ 10GHZ

* This command does noise calculations during the AC analysis. Each
* device's noise contribution is calculated and propogated to node 5.
* All the contributions are rms-summed at node 5. Besides the total
* output noise printout done for every frequency, a detailed table of
* each device's contribution is done every 30'th frequency.
.NOISE V(5) VIN 30

* This command does a transient analysis. It first re-calculates the
* circuit's bias point, then calculates the circuit's time response
* from 0 nanoseconds to 250 nanoseconds using the full, non-linear device
* equations, including non-linear capacitances. PSpice uses a variable
* time step for the calculations, but this command causes the results
* to be interpolated onto a 5 nanosecond print interval. Transient
* analysis is the most frequently used analysis in PSpice.
.TRAN 20NS 1000NS

* This does a harmonic decomposition on the waveform V(5) calculated
* during transient analysis. It calculates the magnitude and phase
* of the fundamental (5 megahertz) and the first eight harmonics.
* The graphics post-processor, Probe, goes further and contains
* a full FFT, allowing complete spectra to be displayed.
.FOUR 5MEG V(5)

* This command does a Monte Carlo analysis of the circuit. It runs
* the DC sweep 5 times using the tolerances in .MODEL statements
* and compares the waveform V(4,5) from each run against the nominal
* V(4,5). It then lists a table of each run's deviation from the
* nominal. The Monte Carlo option can also do Worst Case and Sensitivity
* analysis.
.MC 5 DC V(4,5) YMAX

* PSpice allows parameters to be defined and used in expressions
* throughout the circuit file. Parameters may also be passed into
* subcircuits as arguments and used inside. Here, we define a
* fudge factor for the supply voltages.
.PARAM FACTOR=1.2

* The following statements describe the circuit to PSpice. It is a
* simple differential pair, with +12 and -12 volts as the supplies.

* VIN is the input for this circuit. It has an amplitude during AC analysis
* of 1 volt and a sine waveform during transient of .1 volt at 5 megahertz.
VIN 100 0 AC 1 SIN(0 0.1 5MEG)

* The power supplies are + and - SUPPLY volts. As mentioned above,
* expressions containing parameters can be used for values throughout
* the circuit file. Expressions are enclosed by "{" and "}" and allow
* arithmetic expressions.
VCC 101 0 DC {10*FACTOR}
VEE 102 0 {-10*FACTOR}

* The transistors' nodes are in the order collector - base - emitter.
* All transistors must refer to a model (QNL in this case).
Q1 4 2 6 QNL
Q2 5 3 6 QNL

* Models for resistors are optional. If used they can specify such things
* as scaling, temperature coefficients, and tolerances.
RS1 100 2 1K
RS2 3 0 1K
RC1 4 101 CRES 10K
RC2 5 101 CRES 10K
Q3 6 7 102 QNL
Q4 7 7 102 QNL
RBIAS 7 101 20K
CLOAD 4 5 5PF

* This statement describes the CRES resistor by giving the values for
* the parameters. Each type of model has its own set of parameters.
* All parameters have default values. In CRES we have set the scaling
* factor to 1, the linear temperature coefficient to .02, and the
* quadratic temperature coefficient to .0045, and given each resistor
* a 5% tolerance on its value during Monte Carlo analysis.
.MODEL CRES RES (R=1 DEV=5% TC1=.02 TC2=.0045)

* The bipolar transistor model is the Gummel-Poon model. It uses the
* same equations as in the UC Berkeley Spice program. There are
* actually 55 model parameters, but most of these are for second-order
* effects that are rarely used. Most bipolar models for realistic
* circuits specify between 12 and 25 parameters and default the rest.
* Here, we have set the forward beta to 80, the base resistance to
* 100 ohms, the collector-substrate capacitance to 2 picofarads, the
* forward transit time to 0.3 nanoseconds, the reverse transit time to
* 6 nanoseconds, the base-emitter capacitance to 3 picofarads, the
* base-collector capacitance to 2 picofarads, and the forward Early
* voltage to 50 volts. The capacitances are actually voltage dependent.
* These numbers are the zero-bias values.
.MODEL QNL NPN (BF=80 RB=100 CCS=2PF TF=0.3NS TR=6NS CJE=3PF CJC=2PF
+ VA=50)

* The Analog Behavioral Modeling option allows one to define a transfer
* function by formula and/or by table. Here, we implement an ideal
* comparator to convert the differential output across nodes 4 and 5 into
* a TTL output on node 10. The voltage across 4 and 5 is multiplied by 1e5
* and that value is looked up in the table. The table has an output of 0v
* for inputs < 0, 5v for inputs > 5, and output=input in between.
* So, the comparator has a gain of 100,000 and saturates at 0v and 5v.
* Although not shown here, one can also define linear transfer functions
* by Laplace transform formulas or by frequency response tables.
E1 10 0 TABLE {V(4,5)*1e5} (0v,0v 5v,5v)
RE1 10 0 1K

* The Digital Simulation option simulates digital components. Instead
* of voltages and waveforms, it calculates 1's and 0's and propogation
* delays. PSpice automatically creates interface components between
* analog and digital sections or circuitry. Here, we drive a 74293,
* 4-bit, ripple counter from the output of the comparator E1.

X1 10 QA 110 110 QA QB QC QD 74293

* This is a digital stimulus which resets the counter
U2 STIM(1, 1) 110 STMIOMDL TIMESTEP = 10NS
+ 0nS, 1
+ 40nS, 0

* These commands provide print and plot output for selected voltages
* and currents. The plots are the so-called "line printer" plots.
* That is, plots made out of characters. To get real, high-resolution
* plots you need to use Probe; it is invoked by the .PROBE command.
.PRINT DC V(4) V(5)
.PLOT DC IC(Q2)
.PLOT AC VCM(Q2) VCP(Q2)
.PLOT NOISE INOISE ONOISE
.PLOT TRAN V(4,5) V(10) D(QA) D(QB)
.PROBE

* We have included the full subcircuit and model definitions here in
* order to make the EXAMPLE1.CIR file self-contained. These models
* come from the digital library files and would normally be accessed
* by using a .LIB command instead of reproducing them in the circuit
* file.
.SUBCKT 74293 CKA CKB R01 R02 QA QB QC QD
U1 NAND(2) R01 R02 RBAR D0_GATE IO_DFT
U2 JKFF(1) $D_HI RBAR CKA $D_HI $D_HI QA $D_NC D_293ASTD IO_STD
U3 JKFF(1) $D_HI RBAR CKB $D_HI $D_HI QB $D_NC D_293BSTD IO_STD
U4 JKFF(1) $D_HI RBAR QB $D_HI $D_HI QC $D_NC D_293BSTD IO_STD
U5 JKFF(1) $D_HI RBAR QC $D_HI $D_HI QD $D_NC D_293BSTD IO_STD
.ENDS

.MODEL D0_GATE UGATE
.MODEL IO_DFT UIO (DRVH=50 DRVL=50 AtoD=STDATOD DtoA=STDDTOA)
.MODEL IO_STD UIO (DRVH=60 DRVL=30 AtoD=STDATOD DtoA=STDDTOA)

.MODEL D_293ASTD UEFF (
+ TPPCQHLTY = 26ns TPPCQHLMX = 40ns
+ TPCLKQLHTY = 10ns TPCLKQLHMX = 16ns
+ TPCLKQHLTY = 12ns TPCLKQHLMX = 18ns
+ TWCLKHMN = 15ns TWCLKHTY = 15ns TWCLKHMX = 15ns
+ TWCLKLMN = 15ns TWCLKLTY = 15ns TWCLKLMX = 15ns
+ TSUPCCLKHMN = 25ns TSUPCCLKHTY = 25ns TSUPCCLKHMX = 25ns
+ TWPCLTY = 15ns TWPCLMX = 15ns )

.MODEL D_293BSTD UEFF (
+ TPPCQHLTY = 26ns TPPCQHLMX = 40ns
+ TPCLKQLHTY = 10ns TPCLKQLHMX = 16ns
+ TPCLKQHLTY = 14ns TPCLKQHLMX = 21ns
+ TWCLKHMN = 30ns TWCLKHTY = 30ns TWCLKHMX = 30ns
+ TWCLKLMN = 30ns TWCLKLTY = 30ns TWCLKLMX = 30ns
+ TSUPCCLKHMN = 25ns TSUPCCLKHTY = 25ns TSUPCCLKHMX = 25ns
+ TWPCLTY = 15ns TWPCLMX = 15ns )

*
* The digital power supply subckt:
* one instance of this subcircuit is created if any AtoD or DtoA
* subckts are created. The one interface pin is always given the
* value "0".
.subckt digifpwr gnd
vdigpos $G_dig_pos $G_dig_neg 5v
r1 $G_dig_pos gnd 1MEG
vdigneg $G_dig_neg gnd 0v
r2 $G_dig_neg gnd 1MEG
vdigref $G_dig_ref gnd 0v
r3 $G_dig_ref gnd 1MEG
.ends

.model stmiomdl UIO (drvh=0 drvl=0 AtoD=STDATOD DtoA=STDDTOA)

* Simple AtoD and DtoA subckts: use globals to connect to power supply
.subckt stdAtoD a d
o1 a $G_dig_ref DOTTLSCH Dgtlnet = d IO_STD
.ends

.subckt stdDtoA d a
n1 a $G_dig_neg $G_dig_pos DIN74 dgtlnet = d IO_STD
.ends

.model DIN74 dinput(
+ s0name = 0, s0tsw = 5ns, s0rlo = 8.54 s0rhi = 238.9,
+ s1name = 1, s1tsw = 8ns, s1rlo = 486 s1rhi = 209,
+ s2name = X, s2tsw = 4ns, s2rlo = 64.4 s2rhi = 90.1,
+ s3name = Z, s3tsw = 8ns, s3rlo = 100k s3rhi = 100k)

.model DOTTLSCH doutput(
+ s0name = 0, s0vlo = -1.5, s0vhi = 1.4,
+ s1name = 1, s1vlo = 1.40, s1vhi = 7.0)

.END


**** Generated AtoD and DtoA Interfaces ****

*
* Analog/Digital interface for node 10
*
* Moving X1.U2:CLKBAR from analog node 10 to new digital node 10$AtoD
X$10_AtoD1 10 10$AtoD STDATOD
*
* Analog/Digital interface power supply subckt
*
X$DIGIFPWR 0 DIGIFPWR

.END ;(end of AtoD and DtoA interfaces)


**** CURRENT MODEL PARAMETERS FOR DEVICES REFERENCING CRES
RC1 RC2
R 1.00E+00 1.00E+00



**** DC TRANSFER CURVES TEMPERATURE = 35.000 DEG C

MONTE CARLO NOMINAL


VIN V(4) V(5)

-1.250E-01 6.363E+00 -7.954E-01
-1.200E-01 6.299E+00 -7.897E-01
-1.150E-01 6.234E+00 -7.838E-01
-1.100E-01 6.170E+00 -7.779E-01
-1.050E-01 6.105E+00 -7.719E-01
-1.000E-01 6.040E+00 -7.658E-01
-9.500E-02 5.975E+00 -7.596E-01
-9.000E-02 5.910E+00 -7.532E-01
-8.500E-02 5.845E+00 -7.467E-01
-8.000E-02 5.780E+00 -7.400E-01
-7.500E-02 5.714E+00 -7.330E-01
-7.000E-02 5.649E+00 -7.258E-01
-6.500E-02 5.583E+00 -7.183E-01
-6.000E-02 5.516E+00 -7.104E-01
-5.500E-02 5.449E+00 -7.019E-01
-5.000E-02 5.382E+00 -6.927E-01
-4.500E-02 5.313E+00 -6.824E-01
-4.000E-02 5.243E+00 -6.705E-01
-3.500E-02 5.170E+00 -6.556E-01
-3.000E-02 5.092E+00 -6.339E-01
-2.500E-02 4.981E+00 -5.766E-01
-2.000E-02 4.494E+00 -1.000E-01
-1.500E-02 3.928E+00 4.638E-01
-1.000E-02 3.355E+00 1.036E+00
-5.000E-03 2.776E+00 1.614E+00
0.000E+00 2.194E+00 2.194E+00
5.000E-03 1.613E+00 2.775E+00
1.000E-02 1.034E+00 3.353E+00
1.500E-02 4.614E-01 3.926E+00
2.000E-02 -1.033E-01 4.491E+00
2.500E-02 -5.585E-01 4.957E+00
3.000E-02 -6.056E-01 5.057E+00
3.500E-02 -6.218E-01 5.130E+00
4.000E-02 -6.315E-01 5.196E+00
4.500E-02 -6.384E-01 5.260E+00
5.000E-02 -6.437E-01 5.323E+00
5.500E-02 -6.479E-01 5.384E+00
6.000E-02 -6.514E-01 5.445E+00
6.500E-02 -6.543E-01 5.506E+00
7.000E-02 -6.569E-01 5.566E+00
7.500E-02 -6.591E-01 5.626E+00
8.000E-02 -6.611E-01 5.685E+00
8.500E-02 -6.628E-01 5.745E+00
9.000E-02 -6.644E-01 5.804E+00
9.500E-02 -6.658E-01 5.863E+00
1.000E-01 -6.671E-01 5.922E+00
1.050E-01 -6.682E-01 5.981E+00
1.100E-01 -6.693E-01 6.040E+00
1.150E-01 -6.702E-01 6.098E+00
1.200E-01 -6.711E-01 6.157E+00
1.250E-01 -6.719E-01 6.215E+00





**** DC TRANSFER CURVES TEMPERATURE = 35.000 DEG C

MONTE CARLO NOMINAL


VIN IC(Q2)
(*)---------- 2.0000E-04 4.0000E-04 6.0000E-04 8.0000E-04 1.0000E-03
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
-1.250E-01 8.837E-04 . . . . * .
-1.200E-01 8.833E-04 . . . . * .
-1.150E-01 8.829E-04 . . . . * .
-1.100E-01 8.825E-04 . . . . * .
-1.050E-01 8.820E-04 . . . . * .
-1.000E-01 8.816E-04 . . . . * .
-9.500E-02 8.812E-04 . . . . * .
-9.000E-02 8.807E-04 . . . . * .
-8.500E-02 8.803E-04 . . . . * .
-8.000E-02 8.798E-04 . . . . * .
-7.500E-02 8.794E-04 . . . . * .
-7.000E-02 8.789E-04 . . . . * .
-6.500E-02 8.783E-04 . . . . * .
-6.000E-02 8.778E-04 . . . . * .
-5.500E-02 8.772E-04 . . . . * .
-5.000E-02 8.766E-04 . . . . * .
-4.500E-02 8.758E-04 . . . . * .
-4.000E-02 8.750E-04 . . . . * .
-3.500E-02 8.740E-04 . . . . * .
-3.000E-02 8.725E-04 . . . . * .
-2.500E-02 8.686E-04 . . . . * .
-2.000E-02 8.356E-04 . . . . * .
-1.500E-02 7.967E-04 . . . * .
-1.000E-02 7.572E-04 . . . * . .
-5.000E-03 7.173E-04 . . . * . .
0.000E+00 6.772E-04 . . . * . .
5.000E-03 6.371E-04 . . . * . .
1.000E-02 5.972E-04 . . * . .
1.500E-02 5.576E-04 . . * . . .
2.000E-02 5.186E-04 . . * . . .
2.500E-02 4.862E-04 . . * . . .
3.000E-02 4.793E-04 . . * . . .
3.500E-02 4.743E-04 . . * . . .
4.000E-02 4.698E-04 . . * . . .
4.500E-02 4.654E-04 . . * . . .
5.000E-02 4.610E-04 . . * . . .
5.500E-02 4.569E-04 . . * . . .
6.000E-02 4.528E-04 . . * . . .
6.500E-02 4.485E-04 . . * . . .
7.000E-02 4.442E-04 . . * . . .
7.500E-02 4.402E-04 . . * . . .
8.000E-02 4.362E-04 . . * . . .
8.500E-02 4.320E-04 . . * . . .
9.000E-02 4.278E-04 . . * . . .
9.500E-02 4.238E-04 . . * . . .
1.000E-01 4.199E-04 . .* . . .
1.050E-01 4.157E-04 . .* . . .
1.100E-01 4.115E-04 . .* . . .
1.150E-01 4.076E-04 . * . . .
1.200E-01 4.037E-04 . * . . .
1.250E-01 3.995E-04 . * . . .

- - - - - - - - - - - - - - - - - - - - - - - - - - -





**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 35.000 DEG C

MONTE CARLO NOMINAL


NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE


( 2) -.0081 ( 3) -.0081 ( 4) 2.1942 ( 5) 2.1942

( 6) -.7606 ( 7) -11.2320 ( 10) 0.0000 ( 100) 0.0000

( 101) 12.0000 ( 102) -12.0000 ($G_dig_neg) 0.0000

($G_dig_pos) 5.0000 ($G_dig_ref) 0.0000



DGTL NODE : STATE DGTL NODE : STATE DGTL NODE : STATE DGTL NODE : STATE


( QA) : 0 ( QB) : 0 ( QC) : 0 ( QD) : 0

( 110) : 1 ( $D_HI) : 1 ( $D_NC) : Z ( 10$AtoD) : 0

( X1.RBAR) : 0




VOLTAGE SOURCE CURRENTS
NAME CURRENT

VIN -8.108E-06
VCC -2.516E-03
VEE 2.532E-03
X$DIGIFPWR.vdigpos -5.000E-06
X$DIGIFPWR.vdigneg -5.000E-06
X$DIGIFPWR.vdigref 0.000E+00

TOTAL POWER DISSIPATION 6.06E-02 WATTS




**** OPERATING POINT INFORMATION TEMPERATURE = 35.000 DEG C

MONTE CARLO NOMINAL





**** VOLTAGE-CONTROLLED VOLTAGE SOURCES


NAME E1
V-SOURCE 0.000E+00
I-SOURCE 0.000E+00


**** BIPOLAR JUNCTION TRANSISTORS


NAME Q1 Q2 Q3 Q4
MODEL QNL QNL QNL QNL
IB 8.11E-06 8.11E-06 1.42E-05 1.42E-05
IC 6.77E-04 6.77E-04 1.37E-03 1.13E-03
VBE 7.52E-01 7.52E-01 7.68E-01 7.68E-01
VBC -2.20E+00 -2.20E+00 -1.05E+01 0.00E+00
VCE 2.95E+00 2.95E+00 1.12E+01 7.68E-01
BETADC 8.35E+01 8.35E+01 9.68E+01 8.00E+01
GM 2.55E-02 2.55E-02 5.16E-02 4.27E-02
RPI 3.28E+03 3.28E+03 1.87E+03 1.87E+03
RX 1.00E+02 1.00E+02 1.00E+02 1.00E+02
RO 7.71E+04 7.71E+04 4.41E+04 4.41E+04
CBE 1.28E-11 1.28E-11 2.06E-11 1.80E-11
CBC 1.28E-12 1.28E-12 8.20E-13 2.01E-12
CBX 0.00E+00 0.00E+00 0.00E+00 0.00E+00
CJS 2.00E-12 2.00E-12 2.00E-12 2.00E-12
BETAAC 8.35E+01 8.35E+01 9.67E+01 8.00E+01
FT 2.89E+08 2.89E+08 3.83E+08 3.40E+08






**** SMALL-SIGNAL CHARACTERISTICS


V(5)/VIN = 1.162E+02

INPUT RESISTANCE AT VIN = 8.738E+03

OUTPUT RESISTANCE AT V(5) = 1.332E+04



**** NOISE ANALYSIS TEMPERATURE = 35.000 DEG C

MONTE CARLO NOMINAL


FREQUENCY = 1.000E+05 HZ




**** DIGITAL OUTPUT SQUARED NOISE VOLTAGES (SQ V/HZ)




X$10_AtoD1.o1

TOTAL 0.000E+00



**** TRANSISTOR SQUARED NOISE VOLTAGES (SQ V/HZ)




Q1 Q2 Q3 Q4

RB 2.096E-14 2.102E-14 2.026E-13 2.018E-13

RC 0.000E+00 0.000E+00 0.000E+00 0.000E+00

RE 0.000E+00 0.000E+00 0.000E+00 0.000E+00

IB 3.450E-14 4.331E-14 8.354E-15 3.078E-15

IC 7.136E-15 7.569E-15 2.233E-14 2.562E-14

FN 0.000E+00 0.000E+00 0.000E+00 0.000E+00

TOTAL 6.259E-14 7.190E-14 2.332E-13 2.305E-13



**** RESISTOR SQUARED NOISE VOLTAGES (SQ V/HZ)




RS1 RS2 RC1 RC2 RBIAS RE1

TOTAL 2.096E-13 2.102E-13 5.796E-18 1.964E-16 6.003E-17 0.000E+00




X$DIGIFPWR.r1X$DIGIFPWR.r2X$DIGIFPWR.r3

TOTAL 0.000E+00 0.000E+00 0.000E+00





**** TOTAL OUTPUT NOISE VOLTAGE = 1.018E-12 SQ V/HZ

= 1.009E-06 V/RT HZ

TRANSFER FUNCTION VALUE:

V(5)/VIN = 1.110E+02

EQUIVALENT INPUT NOISE AT VIN = 9.093E-09 V/RT HZ



**** NOISE ANALYSIS TEMPERATURE = 35.000 DEG C

MONTE CARLO NOMINAL


FREQUENCY = 1.000E+08 HZ




**** DIGITAL OUTPUT SQUARED NOISE VOLTAGES (SQ V/HZ)




X$10_AtoD1.o1

TOTAL 0.000E+00



**** TRANSISTOR SQUARED NOISE VOLTAGES (SQ V/HZ)




Q1 Q2 Q3 Q4

RB 8.467E-21 1.383E-19 2.347E-17 2.398E-17

RC 0.000E+00 0.000E+00 0.000E+00 0.000E+00

RE 0.000E+00 0.000E+00 0.000E+00 0.000E+00

IB 1.066E-19 4.913E-19 1.130E-18 3.428E-19

IC 1.114E-18 4.808E-18 9.088E-18 6.890E-18

FN 0.000E+00 0.000E+00 0.000E+00 0.000E+00

TOTAL 1.229E-18 5.437E-18 3.369E-17 3.121E-17



**** RESISTOR SQUARED NOISE VOLTAGES (SQ V/HZ)




RS1 RS2 RC1 RC2 RBIAS RE1

TOTAL 8.467E-20 1.383E-18 2.404E-20 7.661E-20 1.614E-20 0.000E+00




X$DIGIFPWR.r1X$DIGIFPWR.r2X$DIGIFPWR.r3

TOTAL 0.000E+00 0.000E+00 0.000E+00





**** TOTAL OUTPUT NOISE VOLTAGE = 7.315E-17 SQ V/HZ

= 8.553E-09 V/RT HZ

TRANSFER FUNCTION VALUE:

V(5)/VIN = 7.054E-02

EQUIVALENT INPUT NOISE AT VIN = 1.212E-07 V/RT HZ



**** AC ANALYSIS TEMPERATURE = 35.000 DEG C

MONTE CARLO NOMINAL


LEGEND:

*: VCM(Q2)
+: VCP(Q2)

FREQ VCM(Q2)


(*)---------- 1.0000E-03 1.0000E-01 1.0000E+01 1.0000E+03 1.0000E+05
(+)---------- -2.0000E+02 -1.0000E+02 0.0000E+00 1.0000E+02 2.0000E+02
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1.000E+05 1.110E+02 . . + . * . .
1.259E+05 1.082E+02 . . + . * . .
1.585E+05 1.043E+02 . . + . * . .
1.995E+05 9.876E+01 . . + . * . .
2.512E+05 9.160E+01 . . + . * . .
3.162E+05 8.288E+01 . . + . * . .
3.981E+05 7.304E+01 . . + . * . .
5.012E+05 6.278E+01 . . + . * . .
6.310E+05 5.281E+01 . . + . * . .
7.943E+05 4.366E+01 . . + . * . .
1.000E+06 3.564E+01 . . + . * . .
1.259E+06 2.883E+01 . . + . * . .
1.585E+06 2.320E+01 . . + . * . .
1.995E+06 1.859E+01 . . + . * . .
2.512E+06 1.486E+01 . . + . * . .
3.162E+06 1.186E+01 . .+ .* . .
3.981E+06 9.447E+00 . .+ * . .
5.012E+06 7.509E+00 . .+ * . .
6.310E+06 5.953E+00 . + *. . .
7.943E+06 4.701E+00 . + * . . .
1.000E+07 3.694E+00 . +. * . . .
1.259E+07 2.880E+00 . + . * . . .
1.585E+07 2.222E+00 . + . * . . .
1.995E+07 1.687E+00 . + . * . . .
2.512E+07 1.252E+00 . + . * . . .
3.162E+07 9.014E-01 . + . * . . .
3.981E+07 6.231E-01 . + . * . . .
5.012E+07 4.087E-01 . + . * . . .
6.310E+07 2.505E-01 . . * . . + .
7.943E+07 1.404E-01 . .* . . + .
1.000E+08 7.054E-02 . * . . + .
1.259E+08 3.691E-02 . * . . + . .
1.585E+08 3.312E-02 . * . . + . .
1.995E+08 3.630E-02 . * . + . . .
2.512E+08 3.626E-02 . * . + . . .
3.162E+08 3.327E-02 . * . + . . .
3.981E+08 2.889E-02 . * . + . . .
5.012E+08 2.425E-02 . * . + . . .
6.310E+08 1.993E-02 . * . + . . .
7.943E+08 1.618E-02 . * . + . . .
1.000E+09 1.303E-02 . * . + . . .
1.259E+09 1.044E-02 . * . + . . .
1.585E+09 8.336E-03 . * . + . . .
1.995E+09 6.645E-03 . * . + . . .
2.512E+09 5.290E-03 . * . + . . .
3.162E+09 4.208E-03 . * . + . . .
3.981E+09 3.345E-03 . * . + . . .
5.012E+09 2.659E-03 . * . + . . .
6.310E+09 2.113E-03 . * . + . . .
7.943E+09 1.679E-03 . * . + . . .
1.000E+10 1.334E-03 .* .+ . . .
- - - - - - - - - - - - - - - - - - - - - - - - - - -





**** AC ANALYSIS TEMPERATURE = 35.000 DEG C

MONTE CARLO NOMINAL


LEGEND:

*: INOISE
+: ONOISE

FREQ INOISE


(*)---------- 1.0000E-09 1.0000E-08 1.0000E-07 1.0000E-06 1.0000E-05
(+)---------- 1.0000E-11 1.0000E-09 1.0000E-07 1.0000E-05 1.0000E-03
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1.000E+05 9.093E-09 . * . + . .
1.259E+05 9.198E-09 . * . + . .
1.585E+05 9.362E-09 . * . + . .
1.995E+05 9.615E-09 . * . + . .
2.512E+05 1.000E-08 . .* . + . .
3.162E+05 1.059E-08 . .* . + . .
3.981E+05 1.144E-08 . .* . + . .
5.012E+05 1.266E-08 . . * . + . .
6.310E+05 1.435E-08 . . * . + . .
7.943E+05 1.662E-08 . . * . + . .
1.000E+06 1.954E-08 . . * . + . .
1.259E+06 2.317E-08 . . * . + . .
1.585E+06 2.748E-08 . . * . + . .
1.995E+06 3.235E-08 . . * . + . .
2.512E+06 3.753E-08 . . * . + . .
3.162E+06 4.265E-08 . . * . + . .
3.981E+06 4.734E-08 . . * . + . .
5.012E+06 5.131E-08 . . * . + . .
6.310E+06 5.445E-08 . . * . + . .
7.943E+06 5.680E-08 . . * . + . .
1.000E+07 5.852E-08 . . * . + . .
1.259E+07 5.980E-08 . . * . + . .
1.585E+07 6.084E-08 . . * .+ . .
1.995E+07 6.182E-08 . . * .+ . .
2.512E+07 6.296E-08 . . * + . .
3.162E+07 6.454E-08 . . *+. . .
3.981E+07 6.702E-08 . . X . . .
5.012E+07 7.117E-08 . . + *. . .
6.310E+07 7.863E-08 . . + *. . .
7.943E+07 9.292E-08 . . + * . .
1.000E+08 1.212E-07 . . + . * . .
1.259E+08 1.534E-07 . . + . * . .
1.585E+08 1.167E-07 . . + .* . .
1.995E+08 7.610E-08 . . + *. . .
2.512E+08 5.671E-08 . . + * . . .
3.162E+08 4.735E-08 . . + * . . .
3.981E+08 4.247E-08 . .+ * . . .
5.012E+08 3.976E-08 . + * . . .
6.310E+08 3.819E-08 . + * . . .
7.943E+08 3.725E-08 . +. * . . .
1.000E+09 3.666E-08 . + . * . . .
1.259E+09 3.629E-08 . + . * . . .
1.585E+09 3.606E-08 . + . * . . .
1.995E+09 3.591E-08 . + . * . . .
2.512E+09 3.582E-08 . + . * . . .
3.162E+09 3.576E-08 . + . * . . .
3.981E+09 3.572E-08 . + . * . . .
5.012E+09 3.569E-08 . + . * . . .
6.310E+09 3.568E-08 . + . * . . .
7.943E+09 3.567E-08 . + . * . . .
1.000E+10 3.566E-08 . + . * . . .
- - - - - - - - - - - - - - - - - - - - - - - - - - -





**** INITIAL TRANSIENT SOLUTION TEMPERATURE = 35.000 DEG C

MONTE CARLO NOMINAL


NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE


( 2) -.0081 ( 3) -.0081 ( 4) 2.1942 ( 5) 2.1942

( 6) -.7606 ( 7) -11.2320 ( 10) 0.0000 ( 100) 0.0000

( 101) 12.0000 ( 102) -12.0000 ($G_dig_neg) 0.0000

($G_dig_pos) 5.0000 ($G_dig_ref) 0.0000



DGTL NODE : STATE DGTL NODE : STATE DGTL NODE : STATE DGTL NODE : STATE


( QA) : 0 ( QB) : 0 ( QC) : 0 ( QD) : 0

( 110) : 1 ( $D_HI) : 1 ( $D_NC) : Z ( 10$AtoD) : 0

( X1.RBAR) : 0




VOLTAGE SOURCE CURRENTS
NAME CURRENT

VIN -8.108E-06
VCC -2.516E-03
VEE 2.532E-03
X$DIGIFPWR.vdigpos -5.000E-06
X$DIGIFPWR.vdigneg -5.000E-06
X$DIGIFPWR.vdigref 0.000E+00

TOTAL POWER DISSIPATION 6.06E-02 WATTS




**** TRANSIENT ANALYSIS TEMPERATURE = 35.000 DEG C

MONTE CARLO NOMINAL


LEGEND:

*: V(4,5)
+: V(10)
=: D(QA)
$: D(QB)

TIME V(4,5)
(*)---------- -4.0000E+00 -1.3333E+00 1.3333E+00 4.0000E+00
(+)---------- 0.0000E+00 2.6667E+00 5.3333E+00 8.0000E+00
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
0.000E+00 -4.525E-13 + . * . . = $ .
2.000E-08 -2.022E-01 + . * . . = $ .
4.000E-08 -8.136E-01 + . * . . = $ .
6.000E-08 -1.607E+00 + *. . . = $ .
8.000E-08 -2.271E+00 + * . . . = $ .
1.000E-07 -2.539E+00 + * . . . = $ .
1.200E-07 -2.284E+00 + * . . . = $ .
1.400E-07 -1.581E+00 + *. . . = $ .
1.600E-07 -6.801E-01 + . * . . = $ .
1.800E-07 1.143E-01 . . * +. . = $ .
2.000E-07 4.331E-01 . . * +. . = $ .
2.200E-07 2.642E-01 . . * +. . = $ .
2.400E-07 -3.643E-01 + . * . . = $ .
2.600E-07 -1.179E+00 + .* . . = $ .
2.800E-07 -1.835E+00 + * . . . = $ .
3.000E-07 -2.107E+00 + * . . . = $ .
3.200E-07 -1.876E+00 + * . . . = $ .
3.400E-07 -1.215E+00 + .* . . = $ .
3.600E-07 -3.366E-01 + . * . . = $ .
3.800E-07 4.521E-01 . . * +. . = $ .
4.000E-07 7.396E-01 . . *+. . = $ .
4.200E-07 5.548E-01 . . * +. . = $ .
4.400E-07 -5.330E-02 + . * . . = $ .
4.600E-07 -9.108E-01 + . * . . = $ .
4.800E-07 -1.602E+00 + *. . . = $ .
5.000E-07 -1.892E+00 + * . . . = $ .
5.200E-07 -1.660E+00 + *. . . = $ .
5.400E-07 -9.840E-01 + . * . . = $ .
5.600E-07 -1.159E-01 + . * . . = $ .
5.800E-07 6.492E-01 . . * +. . = $ .
6.000E-07 9.533E-01 . . X. . = $ .
6.200E-07 7.576E-01 . . *+. . = $ .
6.400E-07 1.312E-01 . . * +. . = $ .
6.600E-07 -7.356E-01 + . * . . = $ .
6.800E-07 -1.429E+00 + * . . = $ .
7.000E-07 -1.722E+00 + * . . . = $ .
7.200E-07 -1.497E+00 + * . . = $ .
7.400E-07 -8.316E-01 + . * . . = $ .
7.600E-07 5.580E-02 . . * +. . = $ .
7.800E-07 8.055E-01 . . *+. . = $ .
8.000E-07 1.112E+00 . . +* . = $ .
8.200E-07 9.022E-01 . . X. . = $ .
8.400E-07 2.615E-01 . . * +. . = $ .
8.600E-07 -5.790E-01 + . * . . = $ .
8.800E-07 -1.264E+00 + .* . . = $ .
9.000E-07 -1.557E+00 + *. . . = $ .
9.200E-07 -1.341E+00 + * . . = $ .
9.400E-07 -6.941E-01 + . * . . = $ .
9.600E-07 1.743E-01 . . * +. . = $ .
9.800E-07 8.895E-01 . . *+. . = $ .
1.000E-06 1.252E+00 . . +* . = $ .
- - - - - - - - - - - - - - - - - - - - - - - - - - -





**** FOURIER ANALYSIS TEMPERATURE = 35.000 DEG C

MONTE CARLO NOMINAL


FOURIER COMPONENTS OF TRANSIENT RESPONSE V(5)



DC COMPONENT = 2.297033E+00

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 5.000E+06 7.003E-01 1.000E+00 -9.447E+01 0.000E+00
2 1.000E+07 1.159E-02 1.656E-02 2.145E+01 1.159E+02
3 1.500E+07 7.505E-03 1.072E-02 3.170E+00 9.764E+01
4 2.000E+07 4.428E-03 6.322E-03 -2.299E+01 7.148E+01
5 2.500E+07 4.406E-03 6.292E-03 -5.854E+01 3.594E+01
6 3.000E+07 4.421E-03 6.313E-03 -4.741E+01 4.707E+01
7 3.500E+07 5.390E-03 7.696E-03 -3.401E+01 6.046E+01
8 4.000E+07 7.493E-03 1.070E-02 -3.779E+01 5.669E+01
9 4.500E+07 2.426E-03 3.464E-03 -1.464E+02 -5.196E+01


TOTAL HARMONIC DISTORTION = 2.634373E+00 PERCENT



**** SORTED DEVIATIONS OF V(4,5) TEMPERATURE = 35.000 DEG C

MONTE CARLO SUMMARY




Mean Deviation = -.5773
Sigma = .1181

RUN MAX DEVIATION FROM NOMINAL

Pass 3 .695 (5.88 sigma) lower at VIN = -.02
( 88.408% of Nominal)

Pass 2 .6839 (5.79 sigma) lower at VIN = .055
( 88.593% of Nominal)

Pass 4 .5174 (4.38 sigma) lower at VIN = .015
( 91.37 % of Nominal)

Pass 5 .4129 (3.50 sigma) lower at VIN = -.045
( 93.113% of Nominal)



JOB CONCLUDED



**** JOB STATISTICS SUMMARY




NUNODS NCNODS NUMNOD NUMEL DIODES BJTS JFETS MFETS GASFETS

11 14 18 28 0 4 0 0 0

NDIGITAL NSTOP NTTAR NTTBR NTTOV IFILL IOPS PERSPA

6 25 77 96 75 19 194 84.640

NUMTTP NUMRTP NUMNIT DIGTP DIGEVT DIGEVL MEMUSE

319 163 1029 100 160 110 31198

SECONDS ITERATIONS


MATRIX SOLUTION 4.51 7

MATRIX LOAD 10.46

DIGITAL SIMULATION .35


READIN 2.03

SETUP .03

DC SWEEP 3.19 177

BIAS POINT .57 22

AC and NOISE 4.25 51

TRANSIENT ANALYSIS 20.00 1029

OUTPUT 3.73

MONTE CARLO 9.47

TOTAL JOB TIME 41.81


  3 Responses to “Category : OS/2 Files
Archive   : PSPICEP1.ZIP
Filename : EXAMPLE1.OUT

  1. Very nice! Thank you for this wonderful archive. I wonder why I found it only now. Long live the BBS file archives!

  2. This is so awesome! 😀 I’d be cool if you could download an entire archive of this at once, though.

  3. But one thing that puzzles me is the “mtswslnkmcjklsdlsbdmMICROSOFT” string. There is an article about it here. It is definitely worth a read: http://www.os2museum.com/wp/mtswslnk/