Category : Files from Magazines
Archive   : AI-NOV88.ZIP
Filename : OUTSTAR.C

 
Output of file : OUTSTAR.C contained in archive : AI-NOV88.ZIP
/***********************************************************
OUTSTAR Simulator

©Maureen Caudill
Adaptics
16776 Bernardo Center Drive
Suite 110 B
San Diego, CA 92128
(617) 451-3752
July, 1988

Written in Lightspeed C (v. 2.15) on Macintosh
Version 1.0

This outstar learns to reproduce a specified pattern
on a grid of border neurodes. The pattern to be learned
is read from an external text file called "pattern"

---------------------------------------------------------------------------------
OPERATION OF THIS SIMULATOR

Read AI Expert Article, November, 1988 for discussion of Grossberg
Learning, Activation Equations and Instar/Outstar.

This simulator models a biological system. The outstar neurode stimulates
each of a 7x10 grid of neurodes at the same time as an external pattern
stimulates the grid. The initial weight connections between the outstar
and the grid neurodes are randomly set between -0.5 and +0.5. The initial
activity in the grid is also randomly set to activity between 0.0 and 0.5.

To run the simulator, you need to have a pattern file which contains the
pattern you want the grid to learn to reproduce when stimulated by the outstar.
The program begins by initializing the weights, activations, reading the data
file and so on. Then the values of the Grossberg learning/activation constants
are checked, with default values assumed initially. I suggest that you leave
these values as they are until you are sure you understand the learning laws.

The menu gives you four choices.
1. Train the network for some specified number of time units.
2. Allow the activation in the grid to decay for some number of time units
3. Test the network by having the outstar stimulate the grid for some number
of time units.
-1. Reset the network (and possibly change the network constants) to either
quit or start over.
When asked to enter the number of time units (for 1 or 2 or 3), remember that
a negative number will only display the grid activation after that number of time
units has passed, while a positive number displays the grid activation after each
time unit.

The proper operation of the simulator is as follows:
train the network for some number of time periods. Remember that the
transmission constant t0 determines how many time units must pass before
the grid even sees the outstar's stimulus (the external pattern is applied
immediately). Thus, if the t0 constant is 3, you should do NOTHING in less
than 4 time units (3 to travel, and 1 to have an effect on the grid).
allow the grid activation levels to decay to zero. No weight changes occur
during this time (why?), so you are effectively just "clearing the slate".
test the network (again for t0+1 time units). If the performance is inadequate,
train again for additional time periods, then allow decay, then test.
Have fun!
-----------------------------------------------------------------------------------------

---------------------------------------------------------------------------------
STRUCTURE OF THIS FILE

include files
constant definitions
general global storage
Grossberg activation/learning constant storage (global)

ÑÑ Major functions ÑÑ
initialize() ;; initialize network operations
train() ;; train the grid for a specified time
decay() ;; allow grid activation to decay a specified time
test() ;; test the grid for a specified time
ÑÑ Utility functions ÑÑ
compute_activation() ;; compute current activation for a grid neurode
change_weight() ;; modify weight of a grid neurode
read_pattern() ;; read pattern from data file
parseline() ;; parse one line of data from file
randomize_wts() ;; randomize weights on grid neurodes
randomize_activity() ;; randomize activity of grid neurodes
set_constants() ;; set Grossberg equation constants
show_constants() ;; show current values of learning/activity constants
show_wts() ;; print current weights on grid neurodes
displaygrid() ;; print the current grid activation
print_menu() ;; print menu of operator choices (train, test, decay, quit)
ÑÑ Main control function ÑÑ
main() ;; main control function
------------------------------------------------------------------------------------
*****************************************************************************************/

#include
#include

#define ROWSIZE 7
#define COLSIZE 10
#define STRINGSIZE 80
#define QUIT -1
#define STIMMASK 1
#define ACTIVATION 1
#define LEARNING 2
#define DISPLAYON 1
#define DISPLAYOFF 2
#define STIM 1
#define NOSTIM 0

/************* General Global Storage ***************************************************/
double gridwts[ROWSIZE][COLSIZE]; /* this stores only the weights from the
single outstar neurode to the grid of rim
neurodes. */
int pattern[ROWSIZE][COLSIZE]; /* this contains the pattern to be impressed
on the grid of rim neurodes */
double activity[ROWSIZE][COLSIZE]; /* this contains the current activation levels
of each grid neurode */
int curtime; /* current time (in integral units) */
double outstar; /* activation level of outstar */
char *inpath = "pattern"; /* file containing pattern to be learned */
unsigned int outstar_save; /* saves history of outstar's output */

/*****************************************************************************************/

/************* Grossberg Activation Constants (set by user or default values) ************/
double A = 0.9; /* activation decay constant */
double T = 0.0; /* threshold */
int t0 = 1; /* transmission time between neurodes */
double F = 0.01; /* forgetting constant for long term memory */
double G = 0.2; /* learning constant for Hebbian learning term */

/*************************************************************
initialize()
initializes the system by:
1. reading in the pattern file
2. randomizing the weights
3. setting the current time to 0
4. establishing the activation/learning constants
**************************************************************/
initialize()
{
read_pattern(); /* read in training pattern from file */
randomize_wts(); /* randomize weights to grid neurodes from outstar */
randomize_activity(); /* randomize activity of grid neurodes */
show_wts(); /* display resulting grid neurode weights */
curtime = 0; /* reset current time to 0 */
displaygrid(curtime); /* display the initial activity of the grid */
set_constants(); /* set the constants to user specified values */
return;
}
/*************************************************************
train(duration)
trains the outstar and grid for "duration" timeunits.
weights are modified during this training period
After each synchronous update of the grid, the
activations are displayed.

If training time is negative, only the grid status after
all "duration" time units will be displayed.

**************************************************************/
train()
{
int duration, displayflag;
int stoptime;
int i,j;
int stim_grid, stim_outstar;

/* ask how many time units to train */
printf("\n How many time units do you want the network to train? ");
printf("\n (Integer value < 32767, negative suppresses all but final display) ");
scanf("%d", &duration);

displayflag = DISPLAYON;

if (duration<0)
{
duration = -duration;
displayflag = DISPLAYOFF;
}
stoptime = curtime+duration;
for ( ; curtime {
stim_grid = STIM;
stim_outstar = STIM;
printf("\n Current time = %d",curtime);
save_outstim(stim_outstar);
for (i=0; i {
for (j=0; j {
compute_activation(i,j,stim_grid, stim_outstar);
change_weight(i,j,stim_outstar);
}
}
if(displayflag == DISPLAYON)
displaygrid();
}
curtime--; /* decrement to avoid using an extra time unit */

/* when complete, if have not been updating display, do a final display of status */
if (displayflag == DISPLAYOFF)
displaygrid();

return;
}

/*************************************************************
decay(duration)
allows grid activation to decay for "duration" timeunits.
no weights are modified during this period, since
stimulations from the outstar are 0.0
After each synchronous update of the grid, the
activations are displayed.

If decay time is negative, only the grid status after
all "duration" time units will be displayed.

**************************************************************/
decay()
{
int duration;
int displayflag;
int stoptime;
int i,j;
int stim_grid, stim_outstar;

/* ask how many time units to decay */
printf("\n How many time units do you want the network to decay? ");
printf("\n (Integer value < 32767, negative suppresses all but final display) ");
scanf("%d", &duration);

displayflag = DISPLAYON;
if (duration<0)
{
duration = -duration;
displayflag = DISPLAYOFF;
}

stim_grid = NOSTIM; /* during decay, no external stimulation of grid */
stim_outstar = NOSTIM; /* during decay, the outstar does not stimulate grid */

stoptime = curtime+duration;
for ( ; curtime {
printf("\n Current time = %d",curtime);
save_outstim(stim_outstar);
for (i=0; i {
for (j=0; j {
compute_activation(i,j,stim_grid, stim_outstar);
}
}
if(displayflag == DISPLAYON)
displaygrid();
}
curtime--;
/* when complete, if have not been updating display, do a final display of status */
if (displayflag == DISPLAYOFF)
displaygrid();

return;
}

/*************************************************************
test(duration)
tests the outstar and grid for "duration" timeunits.
weights are not modified during this training period
After each synchronous update of the grid, the
activations are displayed.

If testing time is negative, only the grid status after
all "duration" time units will be displayed.

**************************************************************/
test()
{
int duration, displayflag;
int stoptime;
int i,j;
int stim_grid, stim_outstar;

/* ask how many time units to test */
printf("\n How many time units do you want the network to test? ");
printf("\n (Integer value < 32767, negative suppresses all but final display) ");
scanf("%d", &duration);

displayflag = DISPLAYON;
if (duration<0)
{
duration = -duration;
displayflag = DISPLAYOFF;
}

stim_grid = NOSTIM; /* no external stimulation of grid during testing */
stim_outstar = STIM; /* outstar does stimulate grid during testing */

stoptime = curtime+duration;
for ( ; curtime {
printf("\n Current time = %d",curtime);
save_outstim(stim_outstar);
for (i=0; i {
for (j=0; j {
compute_activation(i,j,stim_grid, stim_outstar);
}
}
if(displayflag == DISPLAYON)
displaygrid();
}
curtime-- ; /* decrement to avoid using an extra time unit */

/* when complete, if have not been updating display, do a final display of status */
if (displayflag == DISPLAYOFF)
displaygrid();

return;
}
/****************************************************************************
save_outstim(stimout)
Parameter stimout either has the value STIM (1) or NOSTIM (0).
save_outstim keeps a 16-time-unit historical record of
the outputs of the outstar by modifying the global unsigned
integer "outstar_save".
Each time unit the outstar is stimulating the grid is represented
by a "1" in outstar_save; if there is no stimulus, outstar_save has
a "0". The 0th bit has the most recent record, the 15th bit has
the oldest record.
*****************************************************************************/
save_outstim(stimout)
int stimout;
{
outstar_save = outstar_save << 1; /* left shift one bit. A zero fills
the lowest order bit, and the oldest
(highest order bit) is lost */
outstar_save += stimout; /* add current stimulus value
(0 if no stim, 1 if stim) */
return;
}

/**************************************************************
compute_activation(row,col,grid_on,out_on)
compute the current activation for the specified
grid neurode
Parameter "grid_on" is a flag to tell whether or not
the external stimulus is impressing the pattern on
the grid.
Parameter "out_on" is a flag indicating whether the
outstar is currently stimulating the grid.

Note that differential equation is calculated as an
incremental difference equation.
***************************************************************/
compute_activation(row,col,grid_on,out_on)
int row,col,grid_on,out_on;
{
double change;
unsigned int status;
int outstim; /* effective outstar stimulation at current time */

change = -A*activity[row][col] ; /* no matter what, activity will tend to try to decay */
if (grid_on == STIM) /* if there is external stimulus, it will counter decay */
change += pattern[row][col];
if (out_on == STIM) /* if there is outstar stimulus... */
{
status = outstar_save; /* Be sure not to change the global version */
status = status >> t0; /* right shift by t0 time units to allow for
transmission time from outstar */
outstim = status & STIMMASK;
change += gridwts[row][col]*outstim - T;
}
activity[row][col] += change; /* new activity = old plus incremental change */
return;
}

/**************************************************************************************
change_weight(row,col,out_on)
modify the weight of the specified grid neurode synapse
Parameter "out_on" is a flag indicating whether or not
the outstar is currently stimulating the grid.

Note that differential equation is calculated as an
incremental difference equation.

***************************************************************************************/
change_weight(row,col,out_on)
int row,col, out_on;
{
double change; /* the incremental change to this weight */
unsigned int status; /* local copy of global outstar output history */
int outstim; /* effective stimulus from outstar at this time */

change = -F * activity[row][col];
if (out_on == STIM)
{
status = outstar_save; /* Be sure not to change the global version */
status = status >> t0; /* right shift by t0 time units to allow for
transmission time from outstar */
outstim = status & STIMMASK;
change += G * activity[row][col] * (outstim - T);
}
gridwts[row][col] += change;
return;
}

/*******************************************************************
read_pattern()
Read in the input data file and store the patterns in
in_pats and out_pats.

The format for the data file is as follows:
line# data expected
----- -----------------------------
1 In-X-size,in-y-size
2 1st X row of 1st pattern
3.. following rows of 1st pattern
etc.

Each row of data is separated by commas or spaces.
The data is expected to be ascii text corresponding to
either a +1 or a 0.

Sample input for a pattern file (The comments to the
right may NOT be in the file unless more sophisticated
parsing of the input is done.):

5,7 input is 5x7 grid
0,1,1,1,0 beginning of pattern for "O"
1,0,0,0,1
1,0,0,0,1
1,0,0,0,1
1,0,0,0,1
1,0,0,0,0
0,1,1,1,0

Clearly, this simple scheme can be expanded or enhanced
any way you like.

Returns -1 if any file error occurred, otherwise 0.
********************************************************************/
read_pattern()
{
FILE *infile;

int xinsize,yinsize;
int rownum, numcols,x;
int value, vals_read, status;
char instring[STRINGSIZE];

printf("\n Opening and retrieving data from file.");

infile = fopen(inpath, "r");
if (infile == NULL)
{
printf("\n error in opening file!");
return -1 ;
}
vals_read =fscanf(infile,"%d,%d",&xinsize,&yinsize);
if (vals_read != 2)
{
printf("\n Should read 2 items in line one; did read %d",vals_read);
return -1;
}
if ((xinsize != ROWSIZE) || (yinsize != COLSIZE))
{
printf("\n\n ERROR: Pattern file is invalid!");
printf("\n Pattern is a %d by %d grid instead of %d by %d",
xinsize, yinsize, ROWSIZE, COLSIZE);
return -1;
}
numcols = ROWSIZE;
for (rownum = 0; rownum {
status = fscanf(infile,"%s",&instring);
if (status == -1)
{
printf("\n ERROR: Insufficient data in file!");
return -1;
}
value = parseline(instring,numcols,rownum);
if (value == -1)
return -1;
}
printf("\n Closing the input file now. ");
fclose(infile);
return 0;
}

/*******************************************************************
parseline(string,numele,row)
parse line of text to derive elements from pattern string.
Parameters
"string" is a pointer to string to be parsed.
"numele" specifies number of elements contained in "string"
"row" is pointer to correct row of "pattern" for elements.
Elements in the string must be either "0", "1", , ","
0,1 puts appropriate values in pattern array
"", or "," is ignored

Notice that this is an extremely primitive parsing routine.
This can (and should) be improved or modified as desired.

Return:
-1 if error, 0 else.
********************************************************************/
parseline(string,numele,ygrid)
char string[];
int numele,ygrid;
{
int value;
int charnum, ele;
char ch;

charnum = 0;
value = 0;
ele = 0;
while ((ele < numele) && (value == 0))
{
if (charnum == STRINGSIZE) /* made it to the end without filling all element entries */
value = -1;
else
{ /*This routine does not care if digits are separated or not.
each instance of a 0 or 1 will be taken as an element entry in
the pattern. */

ch = string[charnum];
switch (ch)
{
case '0' : /* each "0" will be treated as a grid entry */
pattern[ele][ygrid] = 0;
ele++;
break;
case '1' : /* each "1" will be treated as a grid entry */
pattern[ele][ygrid] = 1;
ele++;
break;
default : /* all other characters are ignored. */
break;
}
charnum++;
}
}
return value;
}

/*******************************************************************
randomize_wts()
Intialize the weights in the grid neurodes to
random values between -0.25..+0.25
********************************************************************/
randomize_wts()
{
int i,j;
double value;

printf("\n Please enter a random number seed (1..32767): ");
scanf("%d", &i);
srand(i);

for(i=0; i {
for (j = 0; j {
value = (rand() / 32767.0 ) - 0.5;
gridwts[i][j] = value/2;
}
}
return;
}
/*******************************************************************
randomize_activity()
Intialize the activity in the grid neurodes to
random values between 0.0..0.5
********************************************************************/
randomize_activity()
{
int i,j;
double value;

for(i=0; i {
for (j = 0; j {
value = ( rand() / 32767.0 );
activity[i][j] = value/2.0;
}
}
return;
}

/*******************************************************************
set_constants()
displays current (default) values for learning/activation
constants and requests user changes.
********************************************************************/
set_constants()
{
int ans;
float value;

show_constants(ACTIVATION);
scanf("%d",&ans);
while (ans != 0)
{
printf("\n New value for A? ");
scanf("%f",&value);
A = (double) value;
printf("\n New value for T? ");
scanf("%f",&value);
T = (double) value;
printf("\n New value for t0? ");
scanf("%d",&t0);
show_constants(ACTIVATION);
scanf("%d",&ans);
}
show_constants(LEARNING);
scanf("%d",&ans);
while (ans != 0)
{
printf("\n New value for F? ");
scanf("%f",&value);
F = (double) value;
printf("\n New value for G? ");
scanf("%f",&value);
G = (double) value;
show_constants(LEARNING);
scanf("%d",&ans);
}
return;
}
/*********************************************************************
show_constants (which)
displays either activation or learning constants for
user approval or modification
Paramter "which" determines which set will be displayed
**********************************************************************/
show_constants(which)
int which;
{
if (which == ACTIVATION)
{
printf("\n The current values for the Grossberg activation constants are:");
printf("\n Activation Decay Time constant (A): %6.3f",A);
printf("\n Activity Threshold (T): %6.3f",T);
printf("\n Transmission time to grid (t0): %d",t0);
}
if (which == LEARNING)
{
printf("\n The current values for the Grossberg learning constants are:");
printf("\n Learning Decay 'Forgetting' constant (F): %6.3f",F);
printf("\n Learning Gain constant (G): %6.3f",G);
}
printf("\n\n Do you wish to change any of these constants? (0 = no) ");
return;
}

/*******************************************************************
show_wts()
print out the weights for the grid neurodes on the screen
********************************************************************/
show_wts()
{
int row,col;

printf("\n The current weights for the grid neurodes are:\n");
for (col = 0; col < COLSIZE; col++)
{
printf ("\n");
for (row = 0; row < ROWSIZE; row++)
{
printf(" %6.3f ",gridwts[row][col]);
}
}
printf("\n\n");
return;
}

/**************************************************************
displaygrid()
prints (text-only for portability) the current activity
of the grid neurodes. Also displays the current time,
and the desired pattern.
***************************************************************/
displaygrid()
{
int i,j;
double value;

printf("\n Current pattern and activity at time %d:",curtime);
printf("\n Scale (0.0 to 1.0): ' . _ o O ¥' \n");
printf("\n Grid activity is:");
printf(" ");
printf(" Desired pattern is:");
for (j=0; j {
printf("\n ");
for (i=0; i {
value = activity[i][j];
if (value < 0.17)
printf(" ");
if ((value >= 0.17) && (value < 0.35))
printf(" . ");
if ((value >= 0.35) && (value < 0.50))
printf(" _ ");
if ((value >= 0.50) && (value < 0.67))
printf(" o ");
if ((value >= 0.67) && (value < 0.83))
printf(" O ");
if (value >= 0.83)
printf(" ¥ ");
}
printf(" ");
for (i=0; i {
switch(pattern[i][j])
{
case 0: printf(" ");
break;
case 1: printf(" ¥ ");
break;
default: break;
}
}
}
printf("\n");
return;
}

/***************************************************************
print_menu()
prints out menu of operations for user choice
****************************************************************/
print_menu()
{
printf("\n\n\n Please select an operation:");
printf("\n\n 1. Train the network for a period of time.");
printf("\n (Both external and outstar stimulate grid)");
printf("\n\n 2. Allow the network to decay for a period of time.");
printf("\n (Neither external or outstar stimulates grid)");
printf("\n\n 3. Test the network for a period of time.");
printf("\n (Only outstar stimulates grid)");
printf("\n\n -1. Train the network for a period of time.");
return;
}

/***************************************************************
main()
main program
****************************************************************/
main()
{
int yesno;
int done, donetraining;
int traintime;
int choice;

done = 0; donetraining = 0;
while (done == 0)
{
initialize();
choice = 0;
/* display the desired grid pattern on the screen */
print_menu();
printf("\n\n Please enter your choice: ");
scanf("%d",&choice);
printf("\n Your selection was %d",choice);
while (choice != QUIT)
{
switch (choice)
{
case 1:
train();
break;
case 2:
decay();
break;
case 3:
test();
break;
default:
{
choice = QUIT;
break;
}
}
print_menu();
printf("\n\n Please enter your choice: ");
scanf("%d",&choice);
printf("\n Your selection was %d",choice);
}
printf("\n\n Training session terminated at user request...");

/* want to start over (allows modification of constants)? */
printf("\n\n Would you like to reset the network and begin again (no = 0)? ");
scanf("%d",&yesno);
if (yesno < 1)
done = 2;
}
printf("\n\n Program complete.");
/* stop */
return;
}

  3 Responses to “Category : Files from Magazines
Archive   : AI-NOV88.ZIP
Filename : OUTSTAR.C

  1. Very nice! Thank you for this wonderful archive. I wonder why I found it only now. Long live the BBS file archives!

  2. This is so awesome! 😀 I’d be cool if you could download an entire archive of this at once, though.

  3. But one thing that puzzles me is the “mtswslnkmcjklsdlsbdmMICROSOFT” string. There is an article about it here. It is definitely worth a read: http://www.os2museum.com/wp/mtswslnk/