Output of file : EXAMPLES.DOC contained in archive : UCALC28.ZIP
Ultimate Calculator 2.8 (UNREGISTERED) [F1] for help

ucalc> ;*******************************************************************
ucalc> ; This text file is a sample session which demonstrates some of the
ucalc> ; features available in the Ultimate Calculator. The sections are
ucalc> ; entitled:
ucalc> ;
ucalc> ; 1. General Calculations
ucalc> ; 2. Physics for Thought
ucalc> ; 3. HBO for Thought
ucalc> ; 4. Are you converted yet?
ucalc> ; 5. Let's use some FORCE
ucalc> ; 6. How to pay
ucalc> ; 7. Let's get a few FACTS straight
ucalc> ;*******************************************************************
ucalc>
ucalc> ; ***********************
ucalc> ; 1. General Calculations
ucalc> ; ***********************
ucalc>
ucalc> 17*(5+8)^2

ucalc> cos(pi)+8/pi + sinh(14)

ucalc> test(x) = x^pi + sin(x) ; User defined function.
ucalc> test(14)

ucalc> sum(x*2+3^x,1..100) ; Summation

ucalc>
ucalc> ; **********************
ucalc> ; 2. Physics for Thought
ucalc> ; **********************
ucalc>
ucalc> mass = 77.2 ; g
ucalc> Volume = 4.0 ; cm^3
ucalc>
ucalc> mass / Volume ; Density

ucalc>
ucalc> mass = 13 ; Lets try a different mass
ucalc>
ucalc> mass / Volume ; Now lets see the new density

ucalc> ; Quantum Mechanics
ucalc>
ucalc> h = 6.63E-34 ; J s
ucalc> m = 9.11E-31 ; kg
ucalc> L = 2E-11 ; m
ucalc>
ucalc> E(x) = (h^2/(8*m*L^2))*x^2 ; Allowed energies for a particle in a box.
ucalc>
ucalc> E(1)

ucalc> ; Oops, you meant L=2E-10, no problem use the Up arrow.
ucalc> L = 2E-10
ucalc> E(1) ; You didn't have to retype the eq. ! Time saver, isn't it?

ucalc> E(5)

ucalc>
ucalc> ; ******************
ucalc> ; 3. HBO for Thought
ucalc> ; ******************
ucalc>
ucalc> mode hbo ; Results will be displayed in Hex, Binary, and Octal
ucalc>
ucalc> #h1E or #hAFF ; ORing two hexadecimal numbers
Decimal: 2815 Hex: AFF Binary: 101011111111 Octal: 5377

ucalc>
ucalc> \$1E or \$AFF ; Same as above (shortcut notation for hex)
Decimal: 2815 Hex: AFF Binary: 101011111111 Octal: 5377

ucalc>
ucalc> #b1010101 or #b111000 + 44/2
Decimal: 95 Hex: 5F Binary: 1011111 Octal: 137

ucalc>
ucalc> mode hbo ; Toggle HBO mode back off
ucalc>
ucalc> ; *************************
ucalc> ; 4. Are you converted yet?
ucalc> ; *************************
ucalc>
ucalc> feet_inches(x) = x * 12 ; You can put these and more in
ucalc> meters_feet(x) = 3.281 * x ; UCALC.DEF if you use them often.
ucalc> celsius_fa(x) = 9/5 * x + 32 ; Celsius to Fahrenheit.
ucalc>
ucalc> celsius_fa(50)

ucalc> feet_inches(3)

ucalc>
ucalc> ; ***********************
ucalc> ; 5. Let's use some FORCE
ucalc> ; ***********************
ucalc>
ucalc> ; FORCE = integral( pgh dA )
ucalc>
ucalc> integ 3x^2*(x+7),4..7

ucalc> integ 6.24*(3-x)*2*sqr(9-x^2),-3..3,1000 ; 1000 for higher precision

ucalc>
ucalc> ; *************
ucalc> ; 6. How to pay
ucalc> ; *************
ucalc>
ucalc> ; You can do all your financial calculations with UCALC.
ucalc>
ucalc> ; Lets take a loan to buy a nice house
ucalc>
ucalc> payment(PV,i,n) = PV*i/(1-(1+i)^(-n)) ; Formula for monthly payments
ucalc>
ucalc> PV = 175000 ; Loan balance
ucalc> i = .01 ; Interest rate (1% monthly)
ucalc> n = 240 ; Number of payments (20 years)
ucalc>
ucalc> payment(PV,i,n)

ucalc> n = 360 ; Maybe we can negotiate better terms
ucalc>
ucalc> payment(PV,i,n)

ucalc> payment(215000,i,n) ; Can we afford a bigger loan?

ucalc>
ucalc> ; You want to become a millionaire by investing \$50,000 and
ucalc> ; earning 14% interest each year. How many years will it take?
ucalc>
ucalc> Term(FV,PV,i) = ln(FV/PV) / ln(1+i)
ucalc>
ucalc> FV = 1000000 ; Future investment value
ucalc> PV = 50000 ; Present investment value
ucalc> i = .14 ; Annual interest
ucalc>
ucalc> Term(FV,PV,i)

ucalc> ; It will take around 23 years
ucalc>
ucalc> ; *********************************
ucalc> ; 7. Let's get a few FACTS straight
ucalc> ; *********************************
ucalc>
ucalc> FACT(1500)*2

ucalc> 1500!*2 ; version 2.+ now supports the factorial (!) symbol.

ucalc> ; Wow, not even the US budget deficit is that big of a number.
ucalc> ; Can your pocket calculator get a factorial that high?
ucalc>
ucalc> solve( exp(x)+3*x = 15 )

ucalc> ; 'last' stores the answer to the previous operation.
ucalc> exp(last)+3*last ; You can use that concept for accuracy checks.

ucalc> solve( sin(x) = 1, 0..pi )

ucalc> sumtable(x^2+2*x,0..10)
Count Value Cumulative
0 0 0
1 3 3
2 8 11
3 15 26
4 24 50
5 35 85
6 48 133
7 63 196
8 80 276
9 99 375
10 120 495

ucalc>
ucalc> ; Compound functions can be defined by using relational operators.
ucalc>
ucalc> ; / x^2+3, x > 0
ucalc> ; tst(x) = | 2, x = 0
ucalc> ; \ x^2-3, x < 0
ucalc>
ucalc> tst(x) = (x^2+3)*(x>0) + (2)*(x=0) + (x^2-3)*(x<0)
ucalc> tst(15)

ucalc> tst(-8)

ucalc> 3*tst(0)^2+pi

ucalc>
ucalc> ; These are just some of the things you can do with UCALC.
ucalc>
ucalc> ; Please remember to pay the registration fee. This will allow me
ucalc> ; spend the necessary amount of time in order to add some of the
ucalc> ; features that you would like to see in the next version.
ucalc>


### 3 Responses to “Category : Science and EducationArchive   : UCALC28.ZIPFilename : EXAMPLES.DOC”

1. Very nice! Thank you for this wonderful archive. I wonder why I found it only now. Long live the BBS file archives!

2. This is so awesome! 😀 I’d be cool if you could download an entire archive of this at once, though.

3. But one thing that puzzles me is the “mtswslnkmcjklsdlsbdmMICROSOFT” string. There is an article about it here. It is definitely worth a read: http://www.os2museum.com/wp/mtswslnk/