Category : Science and Education
Archive   : MODSTAT2.ZIP
Filename : MENU5.TBC

 
Output of file : MENU5.TBC contained in archive : MODSTAT2.ZIP

rzAHÿÿM  0@P6?uuukuµànÍ캾@͜¾bÍ ¾<͜¾^Í ¾8͜¾ZÍ ¾4͜¾VÍ ¾0͜¾RÍ ¾,͜¾NÍ Íìp¦$¾(͜¾JÍ Íì¾$͜;͸¾ ͜;͸͸¾͜;͸¾͜;͸͸¾͜;͸͸¾͜;͸͸¾ ͜;͸͸¾͜;͸¾͜;͸͸¾͜;͸¾ü͜;͸͸¾ø͜;͸͸Ç4Ç2͊Í‹0Íìt|`ELk¾ô͜ÍìÍì¾ð͜;͸¾ì͜;͸¾è͜;͸¾ä͜;͸͸¾à͜;͸¾Ü͜;͸¾Ø͜;͸¾Ô͜;͸͸¾Ð͜;͸¾Ì͜;͸͸͊@¾È͜¾F͊͠½ Í9 Í9(͇¸÷Ø£,Í;,Í9͇Í5îÍ8͙¸ÿÿw@ À͇ué5¾Ä͜¾F͊͠½ Í9 Í9͇Í5îÍ8͙͇wé͊´ë²Í5îÍ9͇Í;¼Í8͙¸ÿÿw@ À͇ué7¾À͜¾F͊͠½ Í9 Í9͇Í;¼Í8͙͇wé͊´ë®Í¸¾¼͜¾F͊͠½ Í9 Í9͇¸÷Ø£,Í;,Í9͇Í5îÍ8͙¸ÿÿw@ À͇ué5¾¸͜¾F͊͠½ Í9 Í9͇Í5îÍ8ø͙͇wé͊´ë²Í5îÍ9ð͇Í;¼Í8ð͙¸ÿÿw@ À͇ué7¾´͜¾F͊͠½ Í9 Í9ð͇Í;¼Í8ð͙͇wé͊´ë®Í¸Í;ºÍ8͙¸ÿÿr@ À͇téÍ;ºÍ8ð͙¸ÿÿr@ À͇téÍ;ºÍ9ðÍ8Í:&¼Í:Ù͙͇vépÍ9Í8͙͇ré!Í9Í8Í9Í8Í:ñÍ9è͇éÍ9Í8Í9Í8Í:ñÍ9è͇Íì͸¾°͜;͸¾¬͜;͸¾¨͜;͸¾¤͜;͸¾ ͜;Í9Í8͙͇vé&Í5èÍ8.Í»¾œ͜;Í5èÍ8.ðÍ»¾˜͜;͸͇Í9Í8͙͇ré&Í5èÍ8.ðÍ»¾œ͜;Í5èÍ8.Í»¾˜͜;͸͇Í9Í8͙͇véÍ5èÍ8.Í9à͇Í5èÍ8.ðÍ9Ø͇Í9Í8͙͇réÍ5èÍ8.ðÍ9à͇Í5èÍ8.Í9Ø͇͸¾”͜;¾Z͜ÍÊÍ9èÍË;͸͇͊Ä͸¾͜;¾Z͜ÍÊÍ9ÐÍË;͇¾Œ͜;͸͸Í9²Í8Ð͙͇vé#Í9Í8.(Í5áÍ9È͇Í9Í8Í8Í9Í8ðÍ8Í:ÁÍ5úÍ9À͇Í9ðÍ8Í9ðÍ8Í9ðÍ8Í:&¼Í:ÉÍ:ñÍ5úÍ9¸͇Í9¸Í9ÀÍ8>ÈÍ:ÉÍ9°͇¾ˆ͜;¾Z͜ÍÊÍ9°ÍË;͇¾„͜;Í9ðÍ8Í:&¼Í»¾€͜;͸͇Í9°Í9¨͇Í9Í8Í:&¼Í9à͇Í5èÍ8°͙͇wé ¾|͜;͸Í5èÍ8°͙͇vé͊b"͊ˆ!éöùÍ9Í8.(Í5áÍ9È͇Í9ðÍ9Í8Í:ñÍ9Í9Í8Í:ñÍ:ÁÍ5úÍ9À͇Í9ÀÍ8>ÈÍ9°͇¾ˆ͜;¾Z͜ÍÊÍ9°ÍË;͇Í;¼Í9ðÍ9Í8Í:ñÍ9Í9Í8Í:ñÍ:ÁÍí:Í9È͇Í5èÍ8Í;¼Í9Í9Í8Í:ñÍí:Í:ñÍ9 ͇Í5èÍ8ðÍ;¼Í9ðÍ9Í8Í:ñÍí:Í:ñÍ9˜͇Í9˜Í8 Í9À͇Í;¼Í9ÀÍ8>ÈÍ:áÍ9è͇¾„͜;¾^͜ÍÊÍ9èÍË;͇¾˜͜;͸Í9°Í9¨͇Í9èÍ9à͇Í5èÍ8°͙͇wé ¾|͜;͸Í5èÍ8°͙͇vé͊b"͊ˆ!é[øÍ9ðÍ9Í8Í:ñÍ9Í9Í8Í:ñÍ:ÁÍ5úÍ9͇Í9Í9Í8.(Í:ñÍ5áÍ9ˆ͇éÍÍì͸¾x͜;͸͸¾t͜;͸͸¾p͜;͸͸¾l͜;͸¾h͜;͸͸¾d͜;͸¾h͜;͸͸¾`͜;͸Ç4Ç2͊ÍÍì‹0ÍìtÎ
â RP¾\͜;͸¾X͜;͸͸͊@͊›!͊Ð!Í5îÍ9€͇Í9¨Í8€͙¸ÿÿw@ À͇ué7¾T͜¾F͊͠½ Í9 Í9€͇Í9¨Í8€͙͇wé͊´뮸÷Ø£,Í;,Í9x͇Í9¨Í8x͙¸ÿÿw@ À͇ué7¾P͜¾F͊͠½ Í9 Í9x͇Í9¨Í8x͙͇wé͊´ë®Í9€Í8€Í9hÍ8hÍ8xÍ8xÍ:ñÍ9p͇Í9 Í8pÍ«Í9p͇¾L͜;Í9pͻ͸͇͊ˆ!é9þ¾\͜;͸¾H͜;͸͸͊@Í5îÍ9`͇Í;žÍ8`͙¸ÿÿw@ À͇ué7¾D͜¾F͊͠½ Í9 Í9`͇Í;žÍ8`͙͇wé͊´ë®ÍŠ›!͊Ð!Í5îÍ9€͇Í9¨Í8€͙¸ÿÿw@ À͇ué7¾T͜¾F͊͠½ Í9 Í9€͇Í9¨Í8€͙͇wé͊´뮸÷Ø£,Í;,Í9x͇Í9¨Í8x͙¸ÿÿw@ À͇ué7¾P͜¾F͊͠½ Í9 Í9x͇Í9¨Í8x͙͇wé͊´ë®Í9hÍ8`Í8hÍ8xÍ8xÍ9X͇Í9hÍ8hÍ8xÍ8xÍ9€Í5èÍ8.`Í:ÉÍ8€Í:ÁÍ9P͇Í9PÍ8>XÍ9p͇Í9 Í8pÍ«Í9p͇¾L͜;Í9pͻ͸͇͊ˆ!écü¾\͜;͸¾@͜;͸¾<͜;͸͸͊@͊›!͊Ð!Í5îÍ9€͇Í9¨Í8€͙¸ÿÿw@ À͇téÍ;œÍ8€͙¸ÿÿr@ À͇ué[¾8͜¾F͊͠½ Í9 Í9€͇Í9¨Í8€͙¸ÿÿw@ À͇téÍ;œÍ8€͙¸ÿÿr@ À͇ué͊´éoÿÍ;œÍ8>€Í9€͇Í5îÍ9H͇Í9¨Í8H͙¸ÿÿw@ À͇téÍ;œÍ8H͙¸ÿÿr@ À͇ué[¾4͜¾F͊͠½ Í9 Í9H͇Í9¨Í8H͙¸ÿÿw@ À͇téÍ;œÍ8H͙¸ÿÿr@ À͇ué͊´éoÿÍ;œÍ8>HÍ9H͇Í9hÍ8hÍ8HÍ9HÍ:.ÂÍ:ÉÍ9X͇Í9€Í8€Í9P͇Í9PÍ8>XÍ9p͇Í9 Í8pÍ«Í9p͇¾L͜;Í9pͻ͸͇Í9 Í9H͇Í9hÍ8hÍ8HÍ9HÍ:.ÂÍ:ÉÍ9X͇Í9€Í8€Í9P͇Í9PÍ8>XÍ9p͇Í9 Í8pÍ«Í9p͇¾0͜;Í9pͻ͸͇͊ˆ!éóù¾\͜;͸¾,͜;͸¾<͜;͸͸͊@Í5îÍ9`͇Í;žÍ8`͙¸ÿÿw@ À͇ué7¾D͜¾F͊͠½ Í9 Í9`͇Í;žÍ8`͙͇wé͊´ë®ÍŠ›!͊Ð!Í5îÍ9€͇Í9¨Í8€͙¸ÿÿw@ À͇téÍ;œÍ8€͙¸ÿÿr@ À͇ué[¾8͜¾F͊͠½ Í9 Í9€͇Í9¨Í8€͙¸ÿÿw@ À͇téÍ;œÍ8€͙¸ÿÿr@ À͇ué͊´éoÿÍ;œÍ8>€Í9€͇Í5îÍ9H͇Í9¨Í8H͙¸ÿÿw@ À͇téÍ;œÍ8H͙¸ÿÿr@ À͇ué[¾4͜¾F͊͠½ Í9 Í9H͇Í9¨Í8H͙¸ÿÿw@ À͇téÍ;œÍ8H͙¸ÿÿr@ À͇ué͊´éoÿÍ;œÍ8>HÍ9H͇Í9hÍ8`Í8hÍ8HÍ9HÍ:.ÂÍ:ÉÍ9X͇Í9hÍ8hÍ8HÍ9HÍ:.ÂÍ:ÉÍ9€Í5èÍ8.`Í:ÉÍ8€Í:ÁÍ9P͇Í9PÍ8>XÍ9p͇Í9 Í8pÍ«Í9p͇¾L͜;Í9pͻ͸͇Í9 Í9H͇Í9hÍ8`Í8hÍ8HÍ9HÍ:.ÂÍ:ÉÍ9X͇Í9hÍ8hÍ8HÍ9HÍ:.ÂÍ:ÉÍ9€Í5èÍ8.`Í:ÉÍ8€Í:ÁÍ9P͇Í9PÍ8>XÍ9p͇Í9 Í8pÍ«Í9p͇¾0͜;Í9pͻ͸͇͊ˆ!éÉöÍì¾(͜;͸͸͊@Í5îÍ9@͇Í9”Í8@͙¸ÿÿw@ À͇uéZ¾$͜¾F͊͠½ Í9 Í9@͇Í9”Í8@͙¸ÿÿw@ À͇téÍ9ŒÍ8@͙¸ÿÿr@ À͇ué͊´ë‹Í5îÍ98͇Í;¼Í88͙¸ÿÿw@ À͇ué7¾ ͜¾F͊͠½ Í9 Í98͇Í;¼Í88͙͇wé͊´ë®Í¸Í5îÍ90͇Í9”Í80͙¸ÿÿw@ À͇téÍ9ŒÍ80͙¸ÿÿr@ À͇ué[¾͜¾F͊͠½ Í9 Í90͇Í9”Í80͙¸ÿÿw@ À͇téÍ9ŒÍ80͙¸ÿÿr@ À͇ué͊´éoÿÍ5îÍ9(͇Í;¼Í8(͙¸ÿÿw@ À͇ué7¾͜¾F͊͠½ Í9 Í9(͇Í;¼Í8(͙͇wé͊´ë®Í90Í[email protected]Í5áÍ9 ͇Í9(Í88Í9(Í80Í98Í8@Í:ÁÍ:ñÍ9͇Í9Í:.ÂÍ8Í9(Í:>ÂÍ98Í:>ÂÍ:ÁÍ:ÉÍ5úÍ8> Í9ˆ͇͸¾͜;¾Z͜ÍÊÍ9ˆÍË;͸͇͸Í98Í8@Í9͇Í9(Í80Í9͇Í9Í8͙͇ré"Í9 Í8.Í9͇Í9 Í8Í9͇Í9Í8͙͇sé"Í9 Í8Í9͇Í9 Í8.Í9͇Í98Í8>Í9@͇Í9(Í8>Í90͇Í90Í[email protected]Í5áÍ9 ͇Í9(Í88Í9(Í80Í98Í8@Í:ÁÍ:ñÍ9͇Í9Í:.ÂÍ8Í9(Í:>ÂÍ98Í:>ÂÍ:ÁÍ:ÉÍ5úÍ8> Í9ˆ͇¾͜;͸¾ ͜;¾Z͜ÍÊÍ9ˆÍË;͸͇͸¾͜;͸¾͜;͸͊ˆ!éðêÍì¾͜;͸͸͊@Í5îÍ9͇Í9”Í8͙¸ÿÿw@ À͇ué7¾ü͜¾F͊͠½ Í9 Í9͇Í9”Í8͙͇wé͊´ë®Í5èÍ8͙͇réÍ;œÍ8>Í9͇Í5îÍ9ø͇Í;¼Í8ø͙¸ÿÿw@ À͇ué7¾ø͜¾F͊͠½ Í9 Í9ø͇Í;¼Í8ø͙͇wé͊´ë®Í5îÍ9ð͇Í9”Í8ð͙¸ÿÿw@ À͇ué7¾ô͜¾F͊͠½ Í9 Í9ð͇Í9”Í8ð͙͇wé͊´ë®Í5èÍ8ð͙͇réÍ;œÍ8>ðÍ9ð͇Í9ðÍ8.Í5áÍ9 ͇Í9øÍ9Í:.ÂÍ8Í:ñÍ5úÍ9À͇Í9ÀÍ8> Í9ˆ͇͸¾ð͜;¾Z͜ÍÊÍ9ˆÍË;͸͇͸¾͜;͸¾͜;͸͊ˆ!ééÍì¾ì͜;͸¾è͜;͸¾ä͜;͸͸¾à͜;͸͸¾Ü͜;͸¾Ø͜;͸͸͊ˆ!Íì͊@͸͊›!͊Ð!͸Í9hÍ9ˆ͇¾Ô͜;͸͊M¾>͜¾BÍ ¾B͜¾Ð͚͜¸ÿÿt@ ÀuéTÍ;žÍ8`͙¸ÿÿw@ À͇ué7¾Ì͜¾F͊͠½ Í9 Í9`͇Í;žÍ8`͙͇wé͊´ë®Í¸Í5îÍ9è͇Í;žÍ8è͙¸ÿÿw@ À͇ué7¾È͜¾F͊͠½ Í9 Í9è͇Í;žÍ8è͙͇wé͊´ë®Í¸Í5èÍ8èÍ9à͇Í5èÍ8.èÍ8à͙¸ÿÿr@ À͇uéZ¾Ä͜¾F͊͠½ Í9 Í9à͇Í5èÍ8à͙͇wéÍ9àÍ9Ø͇é/Í5èÍ8.èÍ8à͙͇ré͊´ëˆÍ9èÍ8>àÍ9Ø͇͸Í9èÍ9ØÍ:.ÂÍ8ØÍ:ñÍ5úÍ9Ð͇Í5èÍ8.`Í9àÍ8.`Í:ñÍ5úÍ9È͇¾B͜¾Ð͚͜téÍ9ÈÍ8ÐÍ9Ð͇Í9ÐÍ8ˆÍ8.ØÍ9À͇Í9ÐÍ8ˆÍ8ØÍ9È͇͸Í9¨Í8À͙͇wé
Í5îÍ9À͇Í9ŒÍ8È͙͇ré Í9ŒÍ9È͇¾À͜;¾b͜ÍÊÍ9ØÍË;͸͇¾¼͜;͸¾¸͜;¾b͜ÍÊÍ9ÀÍË;͇¾´͜;¾b͜ÍÊÍ9ÈÍË;͸͇͸͊ˆ!Íì¾°͜ÍìÍì¾ì͜;͸¾¬͜;͸¾ä͜;͸͸¾à͜;͸͸¾¨͜;͸¾¤͜;͸͸¾ ͜;͸͊ˆ!Íì͊@͸͊›!͊Ð!¾œ͜¾F͊͠½ Í9 Í9À͇Í;ºÍ8À͙¸ÿÿw@ À͇ué>͸Í쾘͜;͸¾”͜;Í5èÍ8.ÀÍ»¾͜;͸͇¾Œ͜;͸¾ˆ͜;͸͸¾„͜¾F͊͠½ Í9 Í9¸͇¸÷Ø£,Í;,Í9°͇Í5îÍ8°͙¸ÿÿw@ À͇ué5¾€͜¾F͊͠½ Í9 Í9°͇Í5îÍ8°͙͇wé͊´ë²ÍìN|@Í윾:Í ¾:͜¾x͚͜té
¾Ð͜¾:Í ¾:͜¾Ð͚͜ué
¾t͜¾:Í ¾:͜¾Ð͚͜¸ÿÿt@ Àué/ÍìNp@@ÍìšÍ9¨͇Í5èÍ8ÀÍ8¨͙͇wé͊´ë¸Í9ÀÍ5úÍ8>°Í9 ͇¾:͜¾Ð͚͜té$Í5èÍ8.¨Í9ÀÍ8.¨Í:ñÍ5úÍ8 Í9 ͇Í9¸Í9˜͇Í9 Í8hÍ9͇͸¾l͜;¾R͜ÍÊÍ9˜ÍË;͸͇¾h͜;¾R͜ÍÊÍ9Í8.˜ÍË;͇¾d͜;¾R͜ÍÊÍ9Í8˜ÍË;͸͇͸¾:͜¾Ð͚͜té ¾`͜;͸͸͊ˆ!Íì¾°͜Íì¾\͜;͸͸͋¾X͜¾>Í ¾>͜¾Ð͚͜¸ÿÿu@ Àué¾>͜¾t͚͜‰Ã¸ÿÿu@#Ãué@Íî¾>Í ¾>͜¾x͚͜té
¾Ð͜¾>Í ¾>͜¾T͚͜té
¾t͜¾>Í ëŒÍ‹Ç0‹4;0¸ÿÿ@ Àté‹2;0¸ÿÿ|@ Àu騸‰Ã¸ÍÏÍî¾6Í ¾6͜¾p͚͜¸ÿÿt@ Àté¾6͜¾P͚͜¸ÿÿt@ Àué
¾L͜¾6Í ¸-¾6͜‰Ãͦ;øÿÿ|@ Àté¸9¾6͜‰Ãͦ;øÿÿ@ Àué
¾L͜¾6Í ¾6ͬ͜Í;,Í=¡,‰0͇é.ÿÍ츉øÍÏ͋Íì¾H͜;͸͸͋Í5èÍ9Ð͇Í9¨Í8è͙͇wé Í9¨Í9è͇Í5èÍ8è͙͇vé'Í9àÍ9ˆ͇Í9ØÍ9°͇Í9èÍ9ˆ͇é)Í9ØÍ9ˆ͇Í9àÍ9°͇Í9èÍ:>ÂÍ9ˆ͇Í;‚Í:>¼Í86ˆÍ9€͇Í;‚Í:>¼Í86°Í9x͇Í;€Í:>¼Í9ˆÍí:Í8xÍ8€Í5úÍ;€Í:>ÂÍ9ˆÍí:Í9xÍ:.ÂÍ:ÉÍ:&ÂÍ8€Í5áÍ:ñÍ9p͇Í;„Í8°͙͇véÍ;„Í9`Í8pÍ8hÍ8pÍ8pÍ8pÍ8xÍ8pÍ:ÂÍí:Í8> Í9Ð͇Í;^Í;^Í8ÐÍ8 Í«Í:ñÍ9Ð͇Í5îÍ8Ð͙͇té Í9”Í9Ð͇é6Í;„Í9pÍí:Í8VÍ;€Í9°Íí:Í:ùÍ:ÂÍ8pÍ9p͇éIÿÍ5èÍ8è͙͇wéÍ9ÐÍ:.ÂÍ9Ð͇͋¾D͜¾6Í ¾F͜¾J͛͜¾FÍ ¾F͜¸?Í­¾FÍ ¾F͜;ÍìNP@Í윾6Í ¾6͜¾p͚͜¸ÿÿt@ Àté¾6͜¾P͚͜¸ÿÿt@ Àué
¾D͜¾6Í ¸-¾6͜‰Ãͦ;øÿÿ|@ Àté¸9¾6͜‰Ãͦ;øÿÿ@ Àué ͊´éEÿ¾6ͬ͜Í9 ͇͋͸Íì[email protected]@Í윾>͋͠͸¾<͜;͸¾8͜;͸͸¾4͜;͸¾0͜;͸¾,͜;͸͸͋Í5îÍ9h͇Í9LÍ8h͙¸ÿÿw@ À͇téÍ;°Í8h͙¸ÿÿr@ À͇uéPÍìN(@@ÍìšÍ9h͇Í9LÍ8h͙¸ÿÿw@ À͇téÍ;°Í8h͙¸ÿÿr@ À͇ué͊´ézÿ͋͸Í9¨Í5áÍ9¨͇Í5èÍ9h͇Í5èÍ9`͇Í;¼Í9¨Íí:Í9¨͇Í5èÍ8¨͙͇wé)Í9àÍ9X͇Í9`Í9P͇Í9¨Í:>ÂÍ9ˆ͇Í5èÍ8¨͙͇vé$Í9`Í9X͇Í9àÍ9P͇Í9¨Í9ˆ͇Í;‚Í:>¼Í86XÍ9H͇Í;‚Í:>¼Í86PÍ9@͇Í;€Í:>¼Í9ˆÍí:Í8@Í8HÍ5úÍ;€Í:>ÂÍ9ˆÍí:Í9@Í:.ÂÍ:ÉÍ:&ÂÍ8HÍ5áÍ:ñÍ98͇Í;„Í8P͙͇wé3Í;„Í98Íí:Í8VÍ;€Í9PÍí:Í:ùÍ:ÂÍ88Í98͇Í;„Í9`Í88Í8hÍ88Í8pÍ88Í8xÍ88Í:ÂÍí:Í8>DÍ9h͇Í;^Í;^Í8hÍ8 Í«Í:ñÍ9h͇Í5èÍ8¨͙͇wéÍ9hÍ:.ÂÍ9h͇¾$͜;¾N͜ÍÊÍ9hÍ:¼ÍË;͸͇Í9hÍ:¼Í90͇͸¾ ͜;͸¾͜;͸¾͜;͸͸͋Íì͸¾͜;͸͸͊ˆ!éGÜÍìèÍì2 üøôðìèäàÜØÔÐÌÈÄÀ¼¸´°¬¨¤ œ˜”Œˆ„€|xt$="-"
WHI00600€€€€ €%€*€/€4€9€>€C€H€M€R€W€\€a€f€k€p€u€z€€„€‰€Ž€“€˜€€¢€§€¬€±€¶€»€À€Å€Ê€Ï€Ô€Ù"€ß2€7€38€j#€¢?€Å€€€6-€O0€|€¬€Ç"€È€ê€ë€ì€í@€î-€.€[ €_€=€–€Ó€Ô+€Õ$€€$*€:;€d€Ÿ#€§9€Ê€G€€`=€s7€° €ç€ð €þ/€'€64€],€‘'€½€äK€å9€0>€i;€§€â=€ü<€90€u)€¥€Î6€íD€# 6€g 7€ 5€Ô 3€
5€<
&€q
4€—
%€Ë
3€ð
<€# ;€_ )€š >€Ã 5€
€6 <€C € ,€™ )€Å %€î %€
,€8
;€d
€Ÿ
8€¼
"€ô
=€9€S>€Œ%€Ê €ï€€#€)€8€?€[€w€Š$€<€³=€ï>€,=€j%€§1€Ì#€ý$€ 0€D"€t3€–@€É!€ ?€*=€i=€¦€ã@€÷?€7>€v €´€½)€Ø;€/€<;€k/€¦B€Õ4€@€KB€‹7€Í3€D€7€{ €€€’€™€ŸÐ?š™™™™™¹??{®Gáz´?'ëSŽÉâþ“?6wô¿\‹6?O²žZ}½?½
ƒ2É? 9-+‡ÙÎ÷ï?-Cëâ6?d
à?ü©ñÒMbP?š™™™™™©?VIATION^2
¦Ž–2.0212.0232.0252.0282.0302.0322.0342.0362.0382.0402.0422.0452.0482.0522.0562.0602.0642.0692.0742.0802.0862.0932.1012.1102.1202.1312.1452.1602.1792.2012.2262.2622.3062.3652.4472.5712.7763.1824.30312.706There is some sort of entry error.the exact value by consulting a table of t-values.close to the significance level you desire, please findThe value shown here is slightly conservative. If it isThis t-value is significant at the Enter the level of significance .99 has a Z value of 2.58.95 has a Z value of 1.96.90 has a Z value of 1.64corresponding to the reliability probability.The significance level is entered as the Z valueDepress RETURN to continue CImproper entry. Please try again.0 n-After entering the requested information, depress the RETURN keyFinite population correction factor was used. to The confidence interval is from The population mean is Enter population size NyDo you know the population size (Y or N) ? Enter the sample standard deviation Enter the sample mean when the confidence interval is requested.of Freedom and then re-run this program entering that value DegreesStudent's t-value in the table for Your sample size is less than 30. You should look up theEnter the sample size If you know the size of the population you must enter that information.standard deviation.You must know the sample size, the sample mean and the samplewhen estimating the population mean when using a randomMENU5.TBC to a high of a low of The confidence interval for this value is from The estimated population proportion is Enter the number in the portion under investigation Enter the number in the total random sample Enter the total size of the population YWas the sample taken from a small population without replacement (Y or N)? are sampling from a small population without replacement.The program will also determine the confidence interval if youYou must indicate the percent confidence interval you want.sample of that population.when estimating the population proportion when using a randomThis program allows you to determine the confidence intervalThe calculated Z value under these conditions isEnter the proportion found in the sample Enter the number in the sample Enter the proportion normally found in the population To determine if a sample differs from a population using proportionsexceed 1.96 at the .05 level or 2.58 at the .01 level.In order to be significantly different the Z value mustthe calculated Z value under these conditions becomesTaking into account the correction for discretenessThe calculated Z value under these conditions is Enter the number in the second sample Enter the proportion of the second sample (ie 0.45) Enter the number in the first sample Enter the proportion of the first sample (ie 0.45) To determine if a difference exists between two proportions.no replacement when the population is small and percentagesThe worst case situation would require Enter the estimated error as a percentage (50 for worst case) Enter the acceptable amount of error as a percentage are involved.replacement or when the population is large when percentagesEnter the population size no replacement when the population is small.The required sample size in this case is Enter the assumed standard deviation Enter the acceptable amount of error replacement or when the population is large.Determination of the required sample size for sampling with5. Return to Comparison Menu4. Sampling without replacement from a small population when percentages are involved.3. Sampling with replacement or when the population is large2. Sampling without replacement from a small population.1. Sampling with replacement or when the population is large.Determination of Required Sample SizeThis t-value is non-significant. Degrees of Freedom. with The t-Value is level.This significant at the The calculated 'F' value is degrees of freedom and value exceeds the tabled value with value which is the ratio of the two variances to see if thisnot the variances are equal. This involves determining the Fcalculation, the first thing which is determined is whether orSince the two samples are not large enough to use the Z valueEnter the number in the second group Enter the standard deviation of the second group Enter the mean of the second group Enter the number in the first group Enter the standard deviation of the first group Enter the mean of the first group group. You can do this by using choice 1 of MENU 4You must first determine the mean and standard deviation of eachdeviation for each of the groups.entered as calculated rather than using the population standardIn this case make sure that the sample standard deveiation isIf you have a small number of scores the t-test will be used.are large (over 50).the samples are small (under 50) and the second when the samplessample means. Two possible tests exist, the first is used whenThis program will determine if a difference exists between twoMENU4.TBC7. Return to Previous Menu population mean from a random sample.6. Determination of confidence interval for estimating the population proportion from a random sample.5. Determination of confidence interval for estimating the4. Determination of proper sample size to use.3. Difference between a sample and a population using proportions2. Difference between two groups using proportions. and number in each group is known or raw data available.1. Difference between two group means - Mean, Standard deviation, STATISTICAL PROGRAMS FROM MODERN MICROCOMPUTERS THIS IS THE SECOND MENU FOR COMPARISONS #.############.#####.#####.######.###.###Ž–‡téÍ;øDßìðôøüu…Îñ(MaªÍ)üOUêð¬¼ÀÄÈÌæìò' L  ² 
$
Y
~
†
Œ
Á
æ
' L Ý   _ §
S
Ms¨ÍÕÛ+s×wŽÃ Bg»;`[r§Ì%J¦G˜ ¦Ã6o”Õ^·ÀÈÎÞSœ¿L3s!["º$