Category : Printer + Display Graphics
Archive   : FRACT182.ZIP
Filename : FRACTINT.L

 
Output of file : FRACTINT.L contained in archive : FRACT182.ZIP

Koch1 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
Angle 6
Axiom F--F--F
F=F+F--F+F
}

Koch2 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
Angle 12
Axiom F---F---F---F
F=-F+++F---F+
}

Koch3 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
Angle 4
Axiom F-F-F-F
F=F-F+F+FF-F-F+F
}

Koch6 { ; Adrian Mariano
axiom f+f+f+f
f=f-ff+ff+f+f-f-ff+f+f-f-ff-ff+f
angle 4
}

Dragon { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
Angle 8
Axiom FX
F=
y=+FX--FY+
x=-FX++FY-
}

Peano1 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
Angle 4
Axiom F-F-F-F
F=F-F+F+F+F-F-F-F+F
}

Cesaro { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
Angle 34
Axiom FX
F=
X=----F!X!++++++++F!X!----
}

DoubleCesaro { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
Angle 4
axiom D\90D\90D\90D\90
D=\42!D!/84!D!\42
}

FlowSnake { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
angle=6;
axiom FL
L=FL-FR--FR+FL++FLFL+FR-",
R=+FL-FRFR--FR-FL++FL+FR",
F=
}

CantorDust { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
Angle 6
Axiom F
F=FGF
G=GGG
}

Snowflake2 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
angle 12
axiom F
F=++!F!F--F--F@IQ3|+F!F--
F=F--F!+++@Q3F@QI3|+F!F@Q3|+F!F
}

SnowflakeColor { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
angle 12
axiom F
F=--!F<1!F<1++F<1++F<1@IQ3|-F<1!F<1++
F=F<1++F<1!---@Q3F<1@QI3|-F<1!F<1@Q3|-F<1!F<1
<=
}

Island1 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
angle 4
axiom F+F+F+F
F=FFFF-F+F+F-F[-GFF+F+FF+F]FF
G=@8G@I8
}

Island2 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
angle 4
axiom f+f+f+f
f=f+gf-ff-f-ff+g+ff-gf+ff+f+ff-g-fff
g=@6G@I6
}

Quartet { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
angle 4
axiom fb
A=FBFA+HFA+FB-FA
B=FB+FA-FB-JFBFA
F=
H=-
J=+
}

SnowFlake1 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
Angle 12
Axiom FR
R=++!FRFU++FU++FU!---@Q3FU|-@IQ3!FRFU!
U=!FRFU!|+@Q3FR@IQ3+++!FR--FR--FRFU!--
F=
}

SnowFlake3 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
angle 12
axiom fx
x=++f!x!fy--fx--fy|+@iq3fyf!x!++f!y!++f!y!fx@q3+++f!y!fx
y=fyf!x!+++@iq3fyf!x!++f!x!++f!y!fx@q3|+fx--fy--fxf!y!++
f=
}

Tree1 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
angle=12;
axiom +++FX
[email protected][-FX]+FX
}

Peano2 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
Angle 8
Axiom FXY++F++FXY++F
X=XY@Q2-F@IQ2-FXY++F++FXY
Y=-@Q2F-@IQ2FXY
}

Sierpinski1 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
angle 3
axiom F
F=FXF
X=+FXF-FXF-FXF+
}

Koch4 { ; Adrian Mariano
; from The Fractal Geometry of Nature by Mandelbrot
angle 12
axiom f++++f++++f
f=+f--f++f-
}


Plant07 { ; Ken Philip, from The Science of Fractal Images p.285b
axiom Z
z=zFX[+Z][-Z]
x=x[-FFF][+FFF]FX
angle 14
}

Plant08 { ; Ken Philip, from The Science of Fractal Images, p.286
axiom SLFFF
s=[+++Z][---Z]TS
z=+H[-Z]L
h=-Z[+H]L
t=TL
l=[-FFF][+FFF]F
angle 20
}

Hilbert { ; Ken Philip, from The Science of Fractal Images
axiom x
x=-YF+XFX+FY-
y=+XF-YFY-FX+
angle 4
}

Sierpinski3 { ; From Jim Hanan via Corbit
axiom F-F-F
f=F[-F]F
angle 3
}


Peano3 {
axiom x
x=XFYFX+F+YFXFY-F-XFYFX
y=YFXFY-F-XFYFX+F+YFXFY
angle 4
}

Koch5 {
axiom f+F+F+F
f=F+F-F-FFF+F+F-F
angle 4
}

Sierpinski2 { ; from The Science of Fractal Images
axiom FXF--FF--FF
f=FF
x=--FXF++FXF++FXF--
angle 6
}

SierpinskiSquare {
axiom F+F+F+F
f=FF+F+F+F+FF
angle 4
}


Pentagram { ; created by Adrian Mariano
angle 10
axiom fx++fx++fx++fx++fx
; f=f[[email protected]]
x=[[email protected]@[email protected]]
}


QuadKoch { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; Quadratic Koch island, Figure 1.7a p.9
angle 4
AXIOM F-F-F-F-
F=F+FF-FF-F-F+F+FF-F-F+F+FF+FF-F
}

Fass1 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; FASS curve (3x3 tiles form macrotile), Figure 1.16a p.17
axiom -l
angle 4
L=LF+RFR+FL-F-LFLFL-FRFR+
R=-LFLF+RFRFR+F+RF-LFL-FR
}

Fass2 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; FASS curve (4x4 tiles form macrotile), Figure 1.16b p.17
angle 4
axiom -l
L=LFLF+RFR+FLFL-FRF-LFL-FR+F+RF-LFL-FRFRFR+
R=-LFLFLF+RFR+FL-F-LF+RFR+FLF+RFRF-LFL-FRFR
}

QuadGosper { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; Quadratic Gosper curve, Figure 1.11b p.12
angle 4
axiom -Fr
l=FlFl-Fr-Fr+Fl+Fl-Fr-FrFl+Fr+FlFlFr-Fl+Fr+FlFl+Fr-FlFr-Fr-Fl+Fl+FrFr-
r=+FlFl-Fr-Fr+Fl+FlFr+Fl-FrFr-Fl-Fr+FlFrFr-Fl-FrFl+Fl+Fr-Fr-Fl+Fl+FrFr
f=
}

Plant01 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; Plant-like structure, figure 1.24a p.25
; also p.285a The Science of Fractal Images
angle 14
axiom f
f=F[+F]F[-F]F
}

Plant02 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; Plant-like structure, figure 1.24b p.25
angle 18
axiom f
f=F[+F]F[-F][F]
}

Plant03 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; Plant-like structure, figure 1.24c p.25
angle 16
axiom f
f=FF-[-F+F+F]+[+F-F-F]
}

Plant04 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; Plant-like structure, figure 1.24d p.25
angle 18
axiom x
X=F[+X]F[-X]+X
F=FF
}

Plant05 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; Plant-like structure, figure 1.24e p.25
angle 14
axiom x
X=f[+X][-X]FX
F=FF
}

Plant06 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; Plant-like structure, figure 1.24f p.25
angle 16
axiom x
X=F-[[X]+X]+F[+FX]-X
F=FF
}

Plant09 { ; Adrian Mariano
axiom y
x=X[-FFF][+FFF]FX
y=YFX[+Y][-Y]
angle 14
}

Plant10 { ; Adrian Mariano
axiom f
f=f[+ff][-ff]f[+ff][-ff]f
angle 10
}


Plant11 { ; Adrian Mariano
axiom f
f=F[+F[+F][-F]F][-F[+F][-F]F]F[+F][-F]F
angle 12
}

Curve1 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; curve from figure 1.9a p.10
angle 4
axiom F-F-F-F-
f=FF-F-F-F-F-F+F
}

Curve2 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
angle 4
axiom F-F-F-F-
f=FF-F+F-F-FF
}

Curve3 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; curve from figure 1.9e p.10
axiom F-F-F-F-
angle 4
F=F-FF--F-F
}

Curve4 { ; Adrian Mariano
axiom yf
x=YF+XF+Y
y=XF-YF-X
angle 6
}

Leaf1 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; Compound leaf with alternating branches, Figure 5.12b p.130
angle 8
axiom x
a=n
n=o
o=p
p=x
b=e
e=h
h=j
j=y
x=F[+A(4)]Fy
y=F[-B(4)]Fx
[email protected]@i1.18
}

Leaf2 { ; Adrian Mariano, from the Algorithmic Beauty of Plants
; Compound leaf with alternating branches, Figure 5.12a p.130
angle 8
axiom a
a=f[+x]fb
b=f[-y]fa
x=a
y=b
[email protected]@i1.36
}

Bush { ; Adrian Mariano
Angle 16
Axiom ++++F
F=FF-[-F+F+F]+[+F-F-F]
}

MyTree { ; Adrian Mariano
Angle 16
Axiom ++++F
F=FF-[XY]+[XY]
X=+FY
Y=-FX
}

ColorTriangGasket { ; Adrian Mariano
Angle 6
Axiom --X
X=++FXF++FXF++FXF>1
F=FF
}

SquareGasket { ; Adrian Mariano
Angle 4
Axiom X
X=+FXF+FXF+FXF+FXF
F=FF
}

DragonCurve { ; Adrian Mariano
Angle 4
Axiom X
X=X-YF-
Y=+FX+Y
}

Square { ; Adrian Mariano
Angle 4
Axiom F+F+F+F
F=FF+F+F+F+FF
}

KochCurve { ; Adrian Mariano
Angle 6
Axiom F
F=F+F--F+F
}


Penrose1 { ; by Herb Savage
; based on Martin Gardner's "Penrose Tiles to Trapdoor Ciphers",
; Roger Penrose's rhombuses
Angle 10
Axiom +WF--XF---YF--ZF
W=YF++ZF----XF[-YF----WF]++
X=+YF--ZF[---WF--XF]+
Y=-WF++XF[+++YF++ZF]-
Z=--YF++++WF[+ZF++++XF]--XF
F=
}

ColorPenrose1 { ; by Herb Savage
; based on Martin Gardner's "Penrose Tiles to Trapdoor Ciphers",
; Roger Penrose's rhombuses
; Uses color to show the edge matching rules to force nonperiodicy
Angle 10
Axiom +WC02F--XC04F---YC04F--ZC02F
W=YC04F++ZC02F----XC04F[-YC04F----WC02F]++
X=+YC04F--ZC02F[---WC02F--XC04F]+
Y=-WC02F++XC04F[+++YC04F++ZC02F]-
Z=--YC04F++++WC02F[+ZC02F++++XC04F]--XC04F
F=
}

Penrose2 { ; by Herb Savage
; based on Martin Gardner's "Penrose Tiles to Trapdoor Ciphers",
; Roger Penrose's rhombuses
Angle 10
Axiom ++ZF----XF-YF----WF
W=YF++ZF----XF[-YF----WF]++
X=+YF--ZF[---WF--XF]+
Y=-WF++XF[+++YF++ZF]-
Z=--YF++++WF[+ZF++++XF]--XF
F=
}

Penrose3 { ; by Herb Savage
; based on Martin Gardner's "Penrose Tiles to Trapdoor Ciphers",
; Roger Penrose's rhombuses
Angle 10
Axiom [X]++[X]++[X]++[X]++[X]
W=YF++ZF----XF[-YF----WF]++
X=+YF--ZF[---WF--XF]+
Y=-WF++XF[+++YF++ZF]-
Z=--YF++++WF[+ZF++++XF]--XF
F=
}

Penrose4 { ; by Herb Savage
; based on Martin Gardner's "Penrose Tiles to Trapdoor Ciphers",
; Roger Penrose's rhombuses
Angle 10
Axiom [Y]++[Y]++[Y]++[Y]++[Y]
W=YF++ZF----XF[-YF----WF]++
X=+YF--ZF[---WF--XF]+
Y=-WF++XF[+++YF++ZF]-
Z=--YF++++WF[+ZF++++XF]--XF
F=
}

DoublePenrose { ; by Herb Savage
; This is Penrose3 and Penrose4 superimposed
Angle 10
Axiom [X][Y]++[X][Y]++[X][Y]++[X][Y]++[X][Y]
W=YF++ZF----XF[-YF----WF]++
X=+YF--ZF[---WF--XF]+
Y=-WF++XF[+++YF++ZF]-
Z=--YF++++WF[+ZF++++XF]--XF
F=
}

Sphinx { ; by Herb Savage
; based on Martin Gardner's "Penrose Tiles to Trapdoor Ciphers"
; This is an example of a "reptile"
Angle 6
Axiom X
X=+FF-YFF+FF--FFF|X|F--YFFFYFFF|
Y=-FF+XFF-FF++FFF|Y|F++XFFFXFFF|
F=GG
G=GG
}

PentaPlexity {
; Manual construction by Roger Penrose as a prelude to his development of
; the famous Penrose tiles (the kites and darts) that tile the plane
; only non-periodically.
; Translated first to a "dragon curve" and finally to an L-system
; by Joe Saverino.
Angle 10
Axiom F++F++F++F++F
F=F++F++F|F-F++F
}

; old PentaPlexity:
; Angle 10
; Axiom F++F++F++F++Fabxjeabxykabxyelbxyeahxyeabiye
; F=
; a=Fabxjea
; b=++F--bxykab
; x=++++F----xyelbx
; y=----F++++yeahxy
; e=--F++eabiye
; h=+++++F-----hijxlh
; i=---F+++ijkyhi
; j=-F+jkleij
; k=+F-klhajk
; l=+++F---lhibkl

CircularTile { ; Adrian Mariano
axiom X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X
x=[F+F+F+F[---X-Y]+++++F++++++++F-F-F-F]
y=[F+F+F+F[---Y]+++++F++++++++F-F-F-F]
angle 24
}



  3 Responses to “Category : Printer + Display Graphics
Archive   : FRACT182.ZIP
Filename : FRACTINT.L

  1. Very nice! Thank you for this wonderful archive. I wonder why I found it only now. Long live the BBS file archives!

  2. This is so awesome! 😀 I’d be cool if you could download an entire archive of this at once, though.

  3. But one thing that puzzles me is the “mtswslnkmcjklsdlsbdmMICROSOFT” string. There is an article about it here. It is definitely worth a read: http://www.os2museum.com/wp/mtswslnk/