Category : C++ Source Code
Archive   : VMVCPP.ZIP
Filename : VMALLOC.C

 
Output of file : VMALLOC.C contained in archive : VMVCPP.ZIP
/***
* vmalloc.c -
*
* Copyright (c) 1989-1992, Microsoft Corporation. All rights reserved.
*
*Purpose:
*
* PUBLIC Functions:
*
* FVmAllocatePageVp
* This function will allocate a virtual page at a specific
* virtual address. The page must not allocated already.
*
* VpVmAllocateCb
* This function allocates a block of pages large enough to store
* therequested number of bytes and returns the virtual address of
* this allocation.
*
* VpVmAllocatePage
* This function allocates a virtual page and returns the address
* ofthis allocation.
*
* LOCAL Functions:
*
* FVmAllocatePageHelper
* This function is an internal routine allocates a virtual page
* data specific address and assigns swap storage if appropriate.
*
*******************************************************************************/

#pragma title("Virtual Memory Manager")
#pragma subtitle("Core routines")

#include
#include
#include
#include
#include
#include
#include

#include


extern VPVOID _vpAllocNext;

int _near _fVmSwapping = TRUE;

extern PFBD _pfbdVirtHead;
extern PFBD _pfbdVirtCurr;
extern unsigned long _cVirtPageMax;

#pragma page()

int LOCAL __FVmAllocatePageHelper(PPTE ppte, VPVOID vp)
{
VmTracePrintf(("FVmAllocatePageHelper: vp = %08lX.\n", vp));

Assert(!(*ppte & (fAllocatedPte | fXmsPte | fDiskPte)));


/* If swap storage has already been allocated for this */
/* virtual page then just go ahead and use it. */

if (*ppte & (fEmsPte | fXmsPte | fDiskPte))
{
*ppte |= fAllocatedPte | fUnreferencedPte;

return(TRUE);
}


Assert(*ppte == 0);

if (!_fVmSwapping)
{
HPGD hpgd;
unsigned ipgd;

/* Note: The following call to HpgdVmAllocate may invalidate the */
/* Note: ppte parameter. However, if the call fails, then no */
/* Note: physical memory movement occured and the ppte parameter is */
/* Note: still valid and can be used to reset the allocated flag. */

*ppte = fAllocatedPte | fUnreferencedPte;

if ((hpgd = __HpgdVmAllocate(1)) != hpgdNil)
{
PpgdOfHpgd(hpgd)->vp = vp;
PpgdOfHpgd(hpgd)->pte = fAllocatedPte;
PpgdOfHpgd(hpgd)->hpgdHashNext = _rghpgdHash[ipgd = IpgdHashOfVp(vp)];
_rghpgdHash[ipgd] = hpgd;
return(TRUE);
}

*ppte = 0;

_fVmSwapping = TRUE;
}

/* Once swapping starts, all pages must be assigned swap storage */
/* before the allocation can be considered successful. */

/* Note: It is necessary to ensure that swap storage is available for */
/* Note: every virtual page that is allocated or else it isn't */
/* Note: meaningful to assume that a successful virtual memory */
/* Note: allocation implies that the virtual memory is available. */

if (!__FVmAllocateEmsPage(ppte, vp))
if (!__FVmAllocateXmsPage(ppte))
if (!__FVmAllocateDiskPage(ppte))
{
Assert(*ppte == 0);

return(FALSE); /* Can't allocate physical page */
}

Assert((*ppte & fAllocatedPte) && (*ppte & (fEmsPte | fXmsPte | fDiskPte)));

return(TRUE);
}

#pragma page()

int PUBLIC __FVmAllocatePageVp(VPVOID vp)
{
VPPTE vppte;
PPTE ppte;
PPT ppt;

/*
* Virtual memory is organized into two types. The lower region
* of memory is occupied by page table pages. Page tables describe
* pages of virtual memory and how to access those pages. Even
* the page tables themselves are described by other page tables.
* The page tables are handled by the virtual memory manager and
* should not be accessed by the application. The remainder of
* virtual memory is reserved for the application.
*
* The page tables are split into two levels. The first level of
* page table pages describe themselves and all other page tables.
* The second level of page tables describe the application region
* of the virtual address space. In this implementation, the first
* level of page tables is limited to one page. Based on a page
* size of 2048 bytes and a page table entry size of four bytes,
* the virtual memory region reserved for both levels of page tables
* is 1 megabyte. This also imposes a limit of 511 megabytes on the
* application region of virtual memory.
*
* In order to allocate a page at a specific virtual address in the
* application region, it is necessary to ensure that the page table
* page describing this region is allocated. The root page that
* describes all page table pages is always allocated.
*/


VmTracePrintf(("FVmAllocatePageVp: vp = %08lX.\n", vp));

Assert(IbOfVp(vp) == 0); /* Only whole pages can be allocated */
Assert((vp >= vpptMax) && (vp < vpMax));


vppte = VppteOfVp(vp); /* Virtual address of page table entry */
ppte = &_ptRoot[PageOfVp(vppte)];

if (!(*ppte & fAllocatedPte))
{
unsigned iPage;

/* The page table that describes the page to be allocated has not */
/* yet been allocated. Allocate this page and initialize it. */

if (!__FVmAllocatePageHelper(ppte, VpPageOfVp(vppte)))
return(FALSE);

ppt = __PVmLoadVp(VpPageOfVp(vppte), TRUE);

for (iPage = 0; iPage < (cbVmPage / sizeof(PTE)); iPage++)
(*ppt)[iPage] = (PTE) 0;
}


ppte = __PVmLoadVp(vppte, TRUE);
Assert(ppte != NULL);
if (ppte == NULL) /* Can't load page table */
return(FALSE);

if (*ppte & fAllocatedPte) /* Page already allocated */
return(FALSE);

return(__FVmAllocatePageHelper(ppte, vp));
}

#pragma page()

VPVOID PUBLIC __VpVmAllocateCb(unsigned long cb)
{
unsigned long cPage;
VPVOID vp;
VPVOID vpT;
unsigned long iPage;
unsigned fNewAlloc = 0;

VmTracePrintf(("VpVmAllocateCb: cb = %08lX.\n", cb));

Assert(cb != 0);

cPage = (unsigned) ((cb + cbVmPage - 1UL) / cbVmPage);

Assert(cPage > 0);

// reallocate freed VM pages
if (!__VmGetFreeBlock(&_pfbdVirtHead, &_pfbdVirtCurr, &_cVirtPageMax, cPage, &vp))
{
fNewAlloc = 1;
vp = _vpAllocNext;
}

Assert (vp + cb < vpMax);

RetryAllocation:

vpT = vp;
for (iPage = 0; iPage < cPage; iPage++)
{
if (!__FVmAllocatePageVp(vpT))
{
Assert(((vp & 16383UL) == 0) || (iPage == 0));

#if VMFREE
for (; iPage > 0; iPage--)
__VmFreePageVp(vpT -= cbVmPage);
#endif /* VMFREE */

if (vp & 16383UL)
if ((vp = (vp + 16383UL) & ~16383UL) != (VPVOID) 0)
goto RetryAllocation;

return(vpNil);
}

vpT += cbVmPage;
}

// if this was a 'new' allocation (as opposed to reusing vm space),
// bump the global alloc pointer. If alloc fails, not changed.
if (fNewAlloc)
_vpAllocNext = vpT;

return(vp);
}

#pragma page()


VPVOID PUBLIC __VpVmAllocatePage(void)
{
return(__VpVmAllocateCb(cbVmPage));
}


  3 Responses to “Category : C++ Source Code
Archive   : VMVCPP.ZIP
Filename : VMALLOC.C

  1. Very nice! Thank you for this wonderful archive. I wonder why I found it only now. Long live the BBS file archives!

  2. This is so awesome! 😀 I’d be cool if you could download an entire archive of this at once, though.

  3. But one thing that puzzles me is the “mtswslnkmcjklsdlsbdmMICROSOFT” string. There is an article about it here. It is definitely worth a read: http://www.os2museum.com/wp/mtswslnk/