Category : C Source Code
Archive   : OHLMAKE.ZIP
Filename : VPATH.C

 
Output of file : VPATH.C contained in archive : OHLMAKE.ZIP
/* Copyright (C) 1988, 1989 Free Software Foundation, Inc.
This file is part of GNU Make.

GNU Make is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GNU Make is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Make; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */

#include "make.h"
#include "file.h"
#include "variable.h"


/* Structure used to represent a selective VPATH searchpath. */

struct vpath
{
struct vpath *next; /* Pointer to next struct in the linked list. */
char *pattern; /* The pattern to match. */
char *percent; /* Pointer into `pattern' where the `%' is. */
unsigned int patlen;/* Length of the pattern. */
char **searchpath; /* Null-terminated list of directories. */
unsigned int maxlen;/* Maximum length of any entry in the list. */
};

/* Linked-list of all selective VPATHs. */

static struct vpath *vpaths;

/* Structure for the general VPATH given in the variable. */

static struct vpath *general_vpath;

static int selective_vpath_search ();

/* Reverse the chain of selective VPATH lists so they
will be searched in the order given in the makefiles
and construct the list from the VPATH variable. */

void
build_vpath_lists ()
{
register struct vpath *new = 0;
register struct vpath *old, *nexto;
register char *p;

/* Reverse the chain. */
for (old = vpaths; old != 0; old = nexto)
{
nexto = old->next;
old->next = new;
new = old;
}

vpaths = new;

/* If there is a VPATH variable with a nonnull value, construct the
general VPATH list from it. We use variable_expand rather than just
calling lookup_variable so that it will be recursively expanded. */
p = variable_expand ("$(VPATH)");
if (*p != '\0')
{
construct_vpath_list ("%", p);
/* VPATHS will be nil if there have been no previous `vpath'
directives and none of the given directories exists. */
if (vpaths == 0)
general_vpath = 0;
else
{
general_vpath = vpaths;
/* It was just put into the linked list,
but we don't want it there, so we must remove it. */
vpaths = general_vpath->next;
}
}
}

/* Construct the VPATH listing for the pattern and searchpath given.

This function is called to generate selective VPATH lists and also for
the general VPATH list (which is in fact just a selective VPATH that
is applied to everything). The returned pointer is either put in the
linked list of all selective VPATH lists or in the GENERAL_VPATH
variable.

If SEARCHPATH is nil, remove all previous listings with the same
pattern. If PATTERN is nil, remove all VPATH listings.
Existing and readable directories that are not "." given in the
searchpath separated by colons are loaded into the directory hash
table if they are not there already and put in the VPATH searchpath
for the given pattern with trailing slashes stripped off if present
(and if the directory is not the root, "/").
The length of the longest entry in the list is put in the structure as well.
The new entry will be at the head of the VPATHS chain. */

void
construct_vpath_list (pattern, dirpath)
char *pattern, *dirpath;
{
register unsigned int elem;
register char *p;
register char **vpath;
register unsigned int maxvpath;
unsigned int maxelem;
char *percent;

if (pattern != 0)
{
pattern = savestring (pattern, strlen (pattern));
percent = find_percent (pattern);
}

if (dirpath == 0)
{
/* Remove matching listings. */
register struct vpath *path, *lastpath;

lastpath = vpaths;
for (path = vpaths; path != 0; lastpath = path, path = path->next)
if (pattern == 0
|| (((percent == 0 && path->percent == 0)
|| (percent - pattern == path->percent - path->pattern))
&& streq (pattern, path->pattern)))
{
/* Remove it from the linked list. */
if (lastpath == vpaths)
vpaths = path->next;
else
lastpath->next = path->next;

/* Free its unused storage. */
free (path->pattern);
free ((char *) path->searchpath);
free ((char *) path);
}
if (pattern != 0)
free (pattern);
return;
}

/* Skip over any initial colons. */
p = dirpath;
while (*p == ':')
++p;

/* Figure out the maximum number of VPATH entries and
put it in MAXELEM. We start with 2, one before the
first colon and one nil, the list terminator and
increment our estimated number for each colon we find. */
maxelem = 2;
while (*p != '\0')
if (*p++ == ':')
++maxelem;

vpath = (char **) xmalloc (maxelem * sizeof (char *));
maxvpath = 0;

elem = 0;
p = dirpath;
while (*p != '\0')
{
char *v;
unsigned int len;

/* Find the next entry. */
while (*p != '\0' && *p == ':')
++p;
if (*p == '\0')
break;

/* Find the end of this entry. */
v = p;
while (*p != '\0' && *p != ':')
++p;

len = p - v;
/* Make sure there's no trailing slash,
but still allow "/" as a directory. */
if (len > 1 && p[-1] == '/')
--len;

if (len == 1 && *v == '.')
continue;

v = savestring (v, len);
if (dir_file_exists_p (v, ""))
{
vpath[elem++] = dir_name (v);
free (v);
if (len > maxvpath)
maxvpath = len;
}
else
free (v);
}

if (elem > 0)
{
struct vpath *path;
/* ELEM is now incremented one element past the last
entry, to where the nil-pointer terminator goes.
Usually this is maxelem - 1. If not, shrink down. */
if (elem < (maxelem - 1))
vpath = (char **) xrealloc ((char *) vpath,
(elem + 1) * sizeof (char *));

/* Put the nil-pointer terminator on the end of the VPATH list. */
vpath[elem] = 0;

/* Construct the vpath structure and put it into the linked list. */
path = (struct vpath *) xmalloc (sizeof (struct vpath));
path->searchpath = vpath;
path->maxlen = maxvpath;
path->next = vpaths;
vpaths = path;

/* Set up the members. */
path->pattern = pattern;
path->percent = percent;
path->patlen = strlen (pattern);
}
else
/* There were no entries, so free whatever space we allocated. */
free ((char *) vpath);
}

/* Search the VPATH list whose pattern matches *FILE for a directory
where the name pointed to by FILE exists. If it is found, the pointer
in FILE is set to the newly malloc'd name of the existing file and
we return 1. Otherwise we return 0. */

int
vpath_search (file)
char **file;
{
register struct vpath *v;

/* If there are no VPATH entries or FILENAME starts at the root,
there is nothing we can do. */

if (**file == '/' || (vpaths == 0 && general_vpath == 0))
return 0;

for (v = vpaths; v != 0; v = v->next)
if (pattern_matches (v->pattern, v->percent, *file))
{
if (selective_vpath_search (v, file))
return 1;
break;
}

if (general_vpath != 0)
return selective_vpath_search (general_vpath, file);
else
return 0;
}


/* Search the given VPATH list for a directory where the name pointed
to by FILE exists. If it is found, the pointer in FILE
is set to the newly malloc'd name of the existing file and we return 1.
Otherwise we return 0. */

static int
selective_vpath_search (path, file)
struct vpath *path;
char **file;
{
char *name, *n;
char *filename;
register char **vpath = path->searchpath;
unsigned int maxvpath = path->maxlen;
register unsigned int i;
unsigned int flen, vlen, name_dplen;
int exists;

flen = strlen (*file);

/* Split *FILE into a directory prefix and a name-within-directory.
NAME_DPLEN gets the length of the prefix; FILENAME gets the
pointer to the name-within-directory and FLEN is its length. */

n = rindex (*file, '/');
name_dplen = n != 0 ? n - *file : 0;
filename = name_dplen > 0 ? n + 1 : *file;
if (name_dplen > 0)
flen -= name_dplen + 1;

/* Allocate enough space for the biggest VPATH entry,
a slash, the directory prefix that came with *FILE,
another slash (although this one may not always be
necessary), the filename, and a null terminator. */
name = (char *) alloca (maxvpath + 1 + name_dplen + 1 + flen + 1);

/* Try each VPATH entry. */
for (i = 0; vpath[i] != 0; ++i)
{
n = name;

/* Put the next VPATH entry into NAME at N and increment N past it. */
vlen = strlen (vpath[i]);
bcopy (vpath[i], n, vlen);
n += vlen;

/* Add the directory prefix already in *FILE. */
if (name_dplen > 0)
{
*n++ = '/';
bcopy (*file, n, name_dplen);
n += name_dplen;
}

/* Null-terminate the string.
Now NAME is the name of the directory to look in. */
*n = '\0';

/* Make sure the directory exists and we know its contents. */
if (name_dplen > 0 && !dir_file_exists_p (name, ""))
/* It doesn't exist. */
continue;

/* We know the directory is in the hash table now because either
construct_vpath_list or the code just above put it there.
Does the file we seek exist in it? */

exists = dir_file_exists_p (name, filename);

/* Now add the name-within-directory at the end of NAME. */

if (n != name && n[-1] != '/')
*n++ = '/';
bcopy (filename, n, flen + 1);

/* Is the file mentioned in the makefile?
That counts as almost existing. */

if (!exists)
exists = lookup_file (name) != 0;

if (exists)
{
/* We have found a file. */
/* Store the name we found into *FILE for the caller. */

*file = savestring (name, (n - name) + flen);

return 1;
}
}

return 0;
}

/* Print the data base of VPATH search paths. */

void
print_vpath_data_base ()
{
register unsigned int nvpaths;
register struct vpath *v;

puts ("\n# VPATH Search Paths\n");

nvpaths = 0;
for (v = vpaths; v != 0; v = v->next)
{
register unsigned int i;

printf ("vpath %s ", v->pattern);

for (i = 0; v->searchpath[i] != 0; ++i)
printf ("%s%c", v->searchpath[i],
v->searchpath[i + 1] == 0 ? '\n' : ':');
}

if (vpaths == 0)
puts ("# No `vpath' search paths.");
else
printf ("\n# %u `vpath' search paths.\n", nvpaths);

if (general_vpath == 0)
puts ("\n# No general (`VPATH' variable) search path.");
else
{
register char **path = general_vpath->searchpath;
register unsigned int i;

fputs ("\n# General (`VPATH' variable) search path:\n# ", stdout);

for (i = 0; path[i] != 0; ++i)
printf ("%s%c", path[i], path[i + 1] == 0 ? '\n' : ':');
}
}
/* Copyright (C) 1988, 1989 Free Software Foundation, Inc.
This file is part of GNU Make.

GNU Make is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GNU Make is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Make; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */

/*
* MS-DOS port (c) 1990 by Thorsten Ohl
*
* To this port, the same copying conditions apply as to the
* original release.
*
* IMPORTANT:
* This file is not identical to the original GNU release!
* You should have received this code as patch to the official
* GNU release.
*
* MORE IMPORTANT:
* This port comes with ABSOLUTELY NO WARRANTY.
*
* $Header: e:/gnu/make/RCS/vpath.c'v 3.58.0.2 90/07/17 23:21:21 tho Exp $
*/

#include "make.h"
#include "file.h"
#include "variable.h"

#ifdef MSDOS
#define PATHSEP ';'
#else
#define PATHSEP ':'
#endif

/* Structure used to represent a selective VPATH searchpath. */

struct vpath
{
struct vpath *next; /* Pointer to next struct in the linked list. */
char *pattern; /* The pattern to match. */
char *percent; /* Pointer into `pattern' where the `%' is. */
unsigned int patlen;/* Length of the pattern. */
char **searchpath; /* Null-terminated list of directories. */
unsigned int maxlen;/* Maximum length of any entry in the list. */
};

/* Linked-list of all selective VPATHs. */

static struct vpath *vpaths;

/* Structure for the general VPATH given in the variable. */

static struct vpath *general_vpath;

#ifdef MSDOS
static int selective_vpath_search (struct vpath *path, char **file);
#else /* not MSDOS */
static int selective_vpath_search ();
#endif /* not MSDOS */

/* Reverse the chain of selective VPATH lists so they
will be searched in the order given in the makefiles
and construct the list from the VPATH variable. */

void
build_vpath_lists ()
{
register struct vpath *new = 0;
register struct vpath *old, *nexto;
register char *p;

/* Reverse the chain. */
for (old = vpaths; old != 0; old = nexto)
{
nexto = old->next;
old->next = new;
new = old;
}

vpaths = new;

/* If there is a VPATH variable with a nonnull value, construct the
general VPATH list from it. We use variable_expand rather than just
calling lookup_variable so that it will be recursively expanded. */
p = variable_expand ("$(VPATH)");
if (*p != '\0')
{
construct_vpath_list ("%", p);
/* VPATHS will be nil if there have been no previous `vpath'
directives and none of the given directories exists. */
if (vpaths == 0)
general_vpath = 0;
else
{
general_vpath = vpaths;
/* It was just put into the linked list,
but we don't want it there, so we must remove it. */
vpaths = general_vpath->next;
}
}
}

/* Construct the VPATH listing for the pattern and searchpath given.

This function is called to generate selective VPATH lists and also for
the general VPATH list (which is in fact just a selective VPATH that
is applied to everything). The returned pointer is either put in the
linked list of all selective VPATH lists or in the GENERAL_VPATH
variable.

If SEARCHPATH is nil, remove all previous listings with the same
pattern. If PATTERN is nil, remove all VPATH listings.
Existing and readable directories that are not "." given in the
searchpath separated by colons are loaded into the directory hash
table if they are not there already and put in the VPATH searchpath
for the given pattern with trailing slashes stripped off if present
(and if the directory is not the root, "/").
The length of the longest entry in the list is put in the structure as well.
The new entry will be at the head of the VPATHS chain. */

void
construct_vpath_list (pattern, dirpath)
char *pattern, *dirpath;
{
register unsigned int elem;
register char *p;
register char **vpath;
register unsigned int maxvpath;
unsigned int maxelem;
char *percent;

if (pattern != 0)
{
pattern = savestring (pattern, strlen (pattern));
percent = find_percent (pattern);
}

if (dirpath == 0)
{
/* Remove matching listings. */
register struct vpath *path, *lastpath;

lastpath = vpaths;
for (path = vpaths; path != 0; lastpath = path, path = path->next)
if (pattern == 0
|| (((percent == 0 && path->percent == 0)
|| (percent - pattern == path->percent - path->pattern))
&& streq (pattern, path->pattern)))
{
/* Remove it from the linked list. */
if (lastpath == vpaths)
vpaths = path->next;
else
lastpath->next = path->next;

/* Free its unused storage. */
free (path->pattern);
free ((char *) path->searchpath);
free ((char *) path);
}
if (pattern != 0)
free (pattern);
return;
}

/* Skip over any initial colons. */
p = dirpath;
while (*p == PATHSEP)
++p;

/* Figure out the maximum number of VPATH entries and
put it in MAXELEM. We start with 2, one before the
first colon and one nil, the list terminator and
increment our estimated number for each colon we find. */
maxelem = 2;
while (*p != '\0')
if (*p++ == PATHSEP)
++maxelem;

vpath = (char **) xmalloc (maxelem * sizeof (char *));
maxvpath = 0;

elem = 0;
p = dirpath;
while (*p != '\0')
{
char *v;
unsigned int len;

/* Find the next entry. */
while (*p != '\0' && *p == PATHSEP)
++p;
if (*p == '\0')
break;

/* Find the end of this entry. */
v = p;
while (*p != '\0' && *p != PATHSEP)
++p;

len = p - v;
/* Make sure there's no trailing slash,
but still allow "/" as a directory. */
if (len > 1 && p[-1] == '/')
--len;

if (len == 1 && *v == '.')
continue;

v = savestring (v, len);
if (dir_file_exists_p (v, ""))
{
vpath[elem++] = dir_name (v);
free (v);
if (len > maxvpath)
maxvpath = len;
}
else
free (v);
}

if (elem > 0)
{
struct vpath *path;
/* ELEM is now incremented one element past the last
entry, to where the nil-pointer terminator goes.
Usually this is maxelem - 1. If not, shrink down. */
if (elem < (maxelem - 1))
vpath = (char **) xrealloc ((char *) vpath,
(elem + 1) * sizeof (char *));

/* Put the nil-pointer terminator on the end of the VPATH list. */
vpath[elem] = 0;

/* Construct the vpath structure and put it into the linked list. */
path = (struct vpath *) xmalloc (sizeof (struct vpath));
path->searchpath = vpath;
path->maxlen = maxvpath;
path->next = vpaths;
vpaths = path;

/* Set up the members. */
path->pattern = pattern;
path->percent = percent;
path->patlen = strlen (pattern);
}
else
/* There were no entries, so free whatever space we allocated. */
free ((char *) vpath);
}

/* Search the VPATH list whose pattern matches *FILE for a directory
where the name pointed to by FILE exists. If it is found, the pointer
in FILE is set to the newly malloc'd name of the existing file and
we return 1. Otherwise we return 0. */

int
vpath_search (file)
char **file;
{
register struct vpath *v;

/* If there are no VPATH entries or FILENAME starts at the root,
there is nothing we can do. */

if (**file == '/' || (vpaths == 0 && general_vpath == 0))

return 0;

for (v = vpaths; v != 0; v = v->next)
if (pattern_matches (v->pattern, v->percent, *file))
{
if (selective_vpath_search (v, file))
return 1;
break;
}

if (general_vpath != 0)
return selective_vpath_search (general_vpath, file);
else
return 0;
}


/* Search the given VPATH list for a directory where the name pointed
to by FILE exists. If it is found, the pointer in FILE
is set to the newly malloc'd name of the existing file and we return 1.
Otherwise we return 0. */

static int
selective_vpath_search (path, file)
struct vpath *path;
char **file;
{
char *name, *n;
char *filename;
register char **vpath = path->searchpath;
unsigned int maxvpath = path->maxlen;
register unsigned int i;
unsigned int flen, vlen, name_dplen;
int exists;

flen = strlen (*file);

/* Split *FILE into a directory prefix and a name-within-directory.
NAME_DPLEN gets the length of the prefix; FILENAME gets the
pointer to the name-within-directory and FLEN is its length. */

n = rindex (*file, '/');
name_dplen = n != 0 ? n - *file : 0;
filename = name_dplen > 0 ? n + 1 : *file;
if (name_dplen > 0)
flen -= name_dplen + 1;

/* Allocate enough space for the biggest VPATH entry,
a slash, the directory prefix that came with *FILE,
another slash (although this one may not always be
necessary), the filename, and a null terminator. */
name = (char *) alloca (maxvpath + 1 + name_dplen + 1 + flen + 1);

/* Try each VPATH entry. */
for (i = 0; vpath[i] != 0; ++i)
{
n = name;

/* Put the next VPATH entry into NAME at N and increment N past it. */
vlen = strlen (vpath[i]);
bcopy (vpath[i], n, vlen);
n += vlen;

/* Add the directory prefix already in *FILE. */
if (name_dplen > 0)
{
*n++ = '/';
bcopy (*file, n, name_dplen);
n += name_dplen;
}

/* Null-terminate the string.
Now NAME is the name of the directory to look in. */
*n = '\0';

/* Make sure the directory exists and we know its contents. */
if (name_dplen > 0 && !dir_file_exists_p (name, ""))
/* It doesn't exist. */
continue;

/* We know the directory is in the hash table now because either
construct_vpath_list or the code just above put it there.
Does the file we seek exist in it? */

exists = dir_file_exists_p (name, filename);

/* Now add the name-within-directory at the end of NAME. */

if (n != name && n[-1] != '/')
*n++ = '/';
bcopy (filename, n, flen + 1);

/* Is the file mentioned in the makefile?
That counts as almost existing. */

if (!exists)
exists = lookup_file (name) != 0;

if (exists)
{
/* We have found a file. */
/* Store the name we found into *FILE for the caller. */

*file = savestring (name, (n - name) + flen);

return 1;
}
}

return 0;
}

/* Print the data base of VPATH search paths. */

void
print_vpath_data_base ()
{
register unsigned int nvpaths;
register struct vpath *v;

puts ("\n# VPATH Search Paths\n");

nvpaths = 0;
for (v = vpaths; v != 0; v = v->next)
{
register unsigned int i;

printf ("vpath %s ", v->pattern);

for (i = 0; v->searchpath[i] != 0; ++i)
printf ("%s%c", v->searchpath[i],
v->searchpath[i + 1] == 0 ? '\n' : PATHSEP);
}

if (vpaths == 0)
puts ("# No `vpath' search paths.");
else
printf ("\n# %u `vpath' search paths.\n", nvpaths);

if (general_vpath == 0)
puts ("\n# No general (`VPATH' variable) search path.");
else
{
register char **path = general_vpath->searchpath;
register unsigned int i;

fputs ("\n# General (`VPATH' variable) search path:\n# ", stdout);

for (i = 0; path[i] != 0; ++i)
printf ("%s%c", path[i], path[i + 1] == 0 ? '\n' : PATHSEP);
}
}


  3 Responses to “Category : C Source Code
Archive   : OHLMAKE.ZIP
Filename : VPATH.C

  1. Very nice! Thank you for this wonderful archive. I wonder why I found it only now. Long live the BBS file archives!

  2. This is so awesome! 😀 I’d be cool if you could download an entire archive of this at once, though.

  3. But one thing that puzzles me is the “mtswslnkmcjklsdlsbdmMICROSOFT” string. There is an article about it here. It is definitely worth a read: http://www.os2museum.com/wp/mtswslnk/