Category : C Source Code
Archive   : FRAC151S.ZIP
Filename : FRACTALS.C

 
Output of file : FRACTALS.C contained in archive : FRAC151S.ZIP

/*
FRACTALS.C and CALCFRAC.C actually calculate the fractal images (well,
SOMEBODY had to do it!). The modules are set up so that all logic that
is independent of any fractal-specific code is in CALCFRAC.C, and the
code that IS fractal-specific is in FRACTALS.C. Original author Tim Wegner,
but just about ALL the authors have contributed SOME code to this routine
at one time or another, or contributed to one of the many massive
restructurings.

The Fractal-specific routines are divided into three categories:

1. Routines that are called once-per-orbit to calculate the orbit
value. These have names like "XxxxFractal", and their function
pointers are stored in fractalspecific[fractype].orbit_calc. EVERY
new fractal type needs one of these. Return 0 to continue iterations,
1 if we're done. Results for integer fractals are left in 'lnew.x' and
'lnew.y', for floating point fractals in 'new.x' and 'new.y'.

2. Routines that are called once per pixel to set various variables
prior to the orbit calculation. These have names like xxx_per_pixel
and are fairly generic - chances are one is right for your new type.
They are stored in fractalspecific[fractype].per_pixel.

3. Routines that are called once per screen to set various variables.
These have names like XxxxSetup, and are stored in
fractalspecific[fractype].per_image.

4. The main fractal routine. Usually this will be StandardFractal(),
but if you have written a stand-alone fractal routine independent
of the StandardFractal mechanisms, your routine name goes here,
stored in fractalspecific[fractype].calctype.per_image.

Adding a new fractal type should be simply a matter of adding an item
to the 'fractalspecific' structure, writing (or re-using one of the existing)
an appropriate setup, per_image, per_pixel, and orbit routines.

-------------------------------------------------------------------- */


#include
#include
#include
#include
#include
#include "fractint.h"
#include "mpmath.h"

#ifndef __TURBOC__
#include
#endif

#include "fractype.h"

#define NEWTONDEGREELIMIT 100

extern struct complex initorbit;
extern struct lcomplex linitorbit;
extern char useinitorbit;

extern void (*ltrig0)();
extern void (*ltrig1)();
extern void (*ltrig2)();
extern void (*ltrig3)();
extern void (*dtrig0)();
extern void (*dtrig1)();
extern void (*dtrig2)();
extern void (*dtrig3)();

/* -------------------------------------------------------------------- */
/* The following #defines allow the complex transcendental functions */
/* in parser.c to be used here thus avoiding duplicated code. */
/* -------------------------------------------------------------------- */

#define CMPLXmod(z) (sqr((z).x)+sqr((z).y))
#define CMPLXconj(z) ((z).y = -((z).y))
#define LCMPLXmod(z) (lsqr((z).x)+lsqr((z).y))
#define LCMPLXconj(z) ((z).y = -((z).y))


#define LCMPLXtrig0(arg,out) Arg1->l = (arg); ltrig0(); (out)=Arg1->l
#define LCMPLXtrig1(arg,out) Arg1->l = (arg); ltrig1(); (out)=Arg1->l
#define LCMPLXtrig2(arg,out) Arg1->l = (arg); ltrig2(); (out)=Arg1->l
#define LCMPLXtrig3(arg,out) Arg1->l = (arg); ltrig3(); (out)=Arg1->l

#define CMPLXtrig0(arg,out) Arg1->d = (arg); dtrig0(); (out)=Arg1->d
#define CMPLXtrig1(arg,out) Arg1->d = (arg); dtrig1(); (out)=Arg1->d
#define CMPLXtrig2(arg,out) Arg1->d = (arg); dtrig2(); (out)=Arg1->d
#define CMPLXtrig3(arg,out) Arg1->d = (arg); dtrig3(); (out)=Arg1->d


#define LCMPLXsin(arg,out) Arg1->l = (arg); lStkSin(); (out) = Arg1->l
#define LCMPLXcos(arg,out) Arg1->l = (arg); lStkCos(); (out) = Arg1->l
#define LCMPLXsinh(arg,out) Arg1->l = (arg); lStkSinh(); (out) = Arg1->l
#define LCMPLXcosh(arg,out) Arg1->l = (arg); lStkCosh(); (out) = Arg1->l
#define LCMPLXlog(arg,out) Arg1->l = (arg); lStkLog(); (out) = Arg1->l
#define LCMPLXexp(arg,out) Arg1->l = (arg); lStkExp(); (out) = Arg1->l
/*
#define LCMPLXsqr(arg,out) Arg1->l = (arg); lStkSqr(); (out) = Arg1->l
*/
#define LCMPLXsqr(arg,out) \
(out).x = lsqr((arg).x) - lsqr((arg).y);\
(out).y = multiply((arg).x, (arg).y, bitshiftless1)
#define LCMPLXsqr_old(out) \
(out).x = ltempsqrx - ltempsqry;\
(out).y = multiply(lold.x, lold.y, bitshiftless1)

#define LCMPLXpwr(arg1,arg2,out) Arg2->l = (arg1); Arg1->l = (arg2);\
lStkPwr(); Arg1++; Arg2++; (out) = Arg2->l
#define LCMPLXmult(arg1,arg2,out) Arg2->l = (arg1); Arg1->l = (arg2);\
lStkMul(); Arg1++; Arg2++; (out) = Arg2->l
#define LCMPLXadd(arg1,arg2,out) \
(out).x = (arg1).x + (arg2).x; (out).y = (arg1).y + (arg2).y
#define LCMPLXsub(arg1,arg2,out) \
(out).x = (arg1).x - (arg2).x; (out).y = (arg1).y - (arg2).y

#define LCMPLXtimesreal(arg,real,out) \
(out).x = multiply((arg).x,(real),bitshift);\
(out).y = multiply((arg).y,(real),bitshift)

#define LCMPLXrecip(arg,out) \
{ long denom; denom = lsqr((arg).x) + lsqr((arg).y);\
if(denom==0L) overflow=1; else {(out).x = divide((arg).x,denom,bitshift);\
(out).y = -divide((arg).y,denom,bitshift);}}

#define CMPLXsin(arg,out) Arg1->d = (arg); dStkSin(); (out) = Arg1->d
#define CMPLXcos(arg,out) Arg1->d = (arg); dStkCos(); (out) = Arg1->d
#define CMPLXsinh(arg,out) Arg1->d = (arg); dStkSinh(); (out) = Arg1->d
#define CMPLXcosh(arg,out) Arg1->d = (arg); dStkCosh(); (out) = Arg1->d
#define CMPLXlog(arg,out) Arg1->d = (arg); dStkLog(); (out) = Arg1->d
#define CMPLXexp(arg,out) FPUcplxexp(&(arg), &(out))
/*
#define CMPLXsqr(arg,out) Arg1->d = (arg); dStkSqr(); (out) = Arg1->d
*/
#define CMPLXsqr(arg,out) \
(out).x = sqr((arg).x) - sqr((arg).y);\
(out).y = ((arg).x+(arg).x) * (arg).y
#define CMPLXsqr_old(out) \
(out).x = tempsqrx - tempsqry;\
(out).y = (old.x+old.x) * old.y

#define CMPLXpwr(arg1,arg2,out) (out)= ComplexPower((arg1), (arg2))
#define CMPLXmult1(arg1,arg2,out) Arg2->d = (arg1); Arg1->d = (arg2);\
dStkMul(); Arg1++; Arg2++; (out) = Arg2->d
#define CMPLXmult(arg1,arg2,out) \
{\
CMPLX TmP;\
TmP.x = (arg1).x*(arg2).x - (arg1).y*(arg2).y;\
TmP.y = (arg1).x*(arg2).y + (arg1).y*(arg2).x;\
(out) = TmP;\
}
#define CMPLXadd(arg1,arg2,out) \
(out).x = (arg1).x + (arg2).x; (out).y = (arg1).y + (arg2).y
#define CMPLXsub(arg1,arg2,out) \
(out).x = (arg1).x - (arg2).x; (out).y = (arg1).y - (arg2).y
#define CMPLXtimesreal(arg,real,out) \
(out).x = (arg).x*(real);\
(out).y = (arg).y*(real)

#define CMPLXrecip(arg,out) \
{ double denom; denom = sqr((arg).x) + sqr((arg).y);\
if(denom==0.0) {(out).x = 1.0e10;(out).y = 1.0e10;}else\
{ (out).x = (arg).x/denom;\
(out).y = -(arg).y/denom;}}

extern int xshift, yshift;
long Exp086(long);
double fmod(double,double);
extern int biomorph;
extern int forcesymmetry;
extern int symmetry;
LCMPLX lcoefficient,lold,lnew,lparm, linit,ltmp,ltmp2,lparm2;
long ltempsqrx,ltempsqry;
extern int decomp[];
extern double param[];
extern int potflag; /* potential enabled? */
extern double f_radius,f_xcenter,f_ycenter; /* inversion radius, center */
extern double xxmin,xxmax,yymin,yymax; /* corners */
extern int overflow;
extern int integerfractal; /* TRUE if fractal uses integer math */

int maxcolor;
int root, degree,basin;
double floatmin,floatmax;
double roverd, d1overd, threshold;
CMPLX tmp2;
extern CMPLX init,tmp,old,new,saved,ComplexPower();
CMPLX staticroots[16]; /* roots array for degree 16 or less */
CMPLX *roots = staticroots;
struct MPC *MPCroots;
extern int color, row, col;
extern int invert;
extern double far *dx0, far *dy0;
extern double far *dx1, far *dy1;
long FgHalf;

CMPLX one;
CMPLX pwr;
CMPLX Coefficient;

extern void (*plot)();

extern int colors; /* maximum colors available */
extern int inside; /* "inside" color to use */
extern int outside; /* "outside" color to use */
extern int finattract;
extern int fractype; /* fractal type */
extern int debugflag; /* for debugging purposes */

extern double param[]; /* parameters */
extern long far *lx0, far *ly0; /* X, Y points */
extern long far *lx1, far *ly1; /* X, Y points */
extern long delx,dely; /* X, Y increments */
extern long delmin; /* min(max(dx),max(dy) */
extern long ddelmin; /* min(max(dx),max(dy) */
extern long fudge; /* fudge factor (2**n) */
extern int bitshift; /* bit shift for fudge */
int bitshiftless1; /* bit shift less 1 */

#ifndef sqr
#define sqr(x) ((x)*(x))
#endif

#ifndef lsqr
#define lsqr(x) (multiply((x),(x),bitshift))
#endif

#define modulus(z) (sqr((z).x)+sqr((z).y))
#define conjugate(pz) ((pz)->y = 0.0 - (pz)->y)
#define distance(z1,z2) (sqr((z1).x-(z2).x)+sqr((z1).y-(z2).y))
#define pMPsqr(z) (pMPmul((z),(z)))
#define MPdistance(z1,z2) (pMPadd(pMPsqr(pMPsub((z1).x,(z2).x)),pMPsqr(pMPsub((z1).y,(z2).y))))

double twopi = PI*2.0;
static int c_exp;


/* These are local but I don't want to pass them as parameters */
CMPLX lambda;
extern double magnitude, rqlim, rqlim2;
CMPLX parm,parm2;
CMPLX *floatparm;
LCMPLX *longparm;
extern int (*calctype)();
extern unsigned long lm; /* magnitude limit (CALCMAND) */

/* -------------------------------------------------------------------- */
/* These variables are external for speed's sake only */
/* -------------------------------------------------------------------- */

double sinx,cosx,sinhx,coshx;
double siny,cosy,sinhy,coshy;
double tmpexp;
double tempsqrx,tempsqry;

double foldxinitx,foldyinity,foldxinity,foldyinitx;
long oldxinitx,oldyinity,oldxinity,oldyinitx;
long longtmp;
extern long lmagnitud, llimit, llimit2, l16triglim;
extern periodicitycheck;
extern char floatflag;

extern int StandardFractal();
extern int NewtonFractal2(); /* Lee Crocker's Newton code */

/* these are in mpmath_c.c */
extern int ComplexNewtonSetup(void);
extern int ComplexNewton(void), ComplexBasin(void), MarksCplxMand(void);
extern int MarksCplxMandperp(void);

/* these are in (I think) JB.C */
extern int Std4dFractal(), JulibrotSetup(), jb_per_pixel();

extern int Lsystem();

/* temporary variables for trig use */
long lcosx, lcoshx, lsinx, lsinhx;
long lcosy, lcoshy, lsiny, lsinhy;

/*
** details of finite attractors (required for Magnet Fractals)
** (can also be used in "coloring in" the lakes of Julia types)
*/
extern int attractors; /* number of finite attractors */
extern CMPLX attr[]; /* finite attractor values (f.p) */
extern LCMPLX lattr[]; /* finite attractor values (int) */

/*
** pre-calculated values for fractal types Magnet2M & Magnet2J
*/
CMPLX T_Cm1; /* 3 * (floatparm - 1) */
CMPLX T_Cm2; /* 3 * (floatparm - 2) */
CMPLX T_Cm1Cm2; /* (floatparm - 1) * (floatparm - 2) */

void FloatPreCalcMagnet2() /* precalculation for Magnet2 (M & J) for speed */
{
T_Cm1.x = floatparm->x - 1.0; T_Cm1.y = floatparm->y;
T_Cm2.x = floatparm->x - 2.0; T_Cm2.y = floatparm->y;
T_Cm1Cm2.x = (T_Cm1.x * T_Cm2.x) - (T_Cm1.y * T_Cm2.y);
T_Cm1Cm2.y = (T_Cm1.x * T_Cm2.y) + (T_Cm1.y * T_Cm2.x);
T_Cm1.x += T_Cm1.x + T_Cm1.x; T_Cm1.y += T_Cm1.y + T_Cm1.y;
T_Cm2.x += T_Cm2.x + T_Cm2.x; T_Cm2.y += T_Cm2.y + T_Cm2.y;
}

/* -------------------------------------------------------------------- */
/* Stand-alone routines */
/* -------------------------------------------------------------------- */

extern int orbit2dfloat();
extern int orbit2dlong();
extern int kamtorusfloatorbit();
extern int kamtoruslongorbit();

/* functions defined elswhere needed for fractalspecific */
extern int orbit3dfloat();
extern int orbit3dlong();
extern int lorenz3dlongorbit();
extern int orbit3dlongsetup();
extern int lorenz3dfloatorbit();
extern int orbit3dfloatsetup();
extern int rosslerfloatorbit();
extern int rosslerlongorbit();
extern int henonfloatorbit();
extern int henonlongorbit();
extern int pickoverfloatorbit();
extern int gingerbreadfloatorbit();
extern int diffusion();
extern int plasma();
extern int test();
extern int ifs();
extern int ifs3d();
extern int Bifurcation(void);
extern int BifurcVerhulst(void);
extern int LongBifurcVerhulst(void);
extern int BifurcLambda(void);
extern int LongBifurcLambda(void);
extern int BifurcAddSinPi(void);
extern int BifurcSetSinPi(void);
extern int popcorn(void);

/* -------------------------------------------------------------------- */
/* Bailout Routines Macros */
/* -------------------------------------------------------------------- */

static int near floatbailout()
{
if ( ( magnitude = ( tempsqrx=sqr(new.x) )
+ ( tempsqry=sqr(new.y) ) ) >= rqlim ) return(1);
old = new;
return(0);
}

/* longbailout() is equivalent to next */
#define LONGBAILOUT() \
ltempsqrx = lsqr(lnew.x); ltempsqry = lsqr(lnew.y);\
lmagnitud = ltempsqrx + ltempsqry;\
if (lmagnitud >= llimit || lmagnitud < 0 || labs(lnew.x) > llimit2\
|| labs(lnew.y) > llimit2 || overflow) \
{ overflow=0;return(1);}\
lold = lnew;

#define FLOATTRIGBAILOUT() \
if (fabs(old.y) >= rqlim2) return(1);

#define LONGTRIGBAILOUT() \
if(labs(lold.y) >= llimit2 || overflow) { overflow=0;return(1);}

#define LONGXYTRIGBAILOUT() \
if(labs(lold.x) >= llimit2 || labs(lold.y) >= llimit2 || overflow)\
{ overflow=0;return(1);}

#define FLOATXYTRIGBAILOUT() \
if (fabs(old.x) >= rqlim2 || fabs(old.y) >= rqlim2) return(1);

#define FLOATHTRIGBAILOUT() \
if (fabs(old.x) >= rqlim2) return(1);

#define LONGHTRIGBAILOUT() \
if(labs(lold.x) >= llimit2 || overflow) { overflow=0;return(1);}

#define TRIG16CHECK(X) \
if(labs((X)) > l16triglim || overflow) { overflow=0;return(1);}

#define FLOATEXPBAILOUT() \
if (fabs(old.y) >= 1.0e8) return(1);\
if (fabs(old.x) >= 6.4e2) return(1);

#define LONGEXPBAILOUT() \
if (labs(lold.y) >= 1000L< if (labs(lold.x) >= 8L<
#if 0
/* this define uses usual trig instead of fast trig */
#define FPUsincos(px,psinx,pcosx) \
*(psinx) = sin(*(px));\
*(pcosx) = cos(*(px));

#define FPUsinhcosh(px,psinhx,pcoshx) \
*(psinhx) = sinh(*(px));\
*(pcoshx) = cosh(*(px));
#endif

#define LTRIGARG(X) \
if(labs((X)) > l16triglim)\
{\
double tmp;\
tmp = (X);\
tmp /= fudge;\
tmp = fmod(tmp,twopi);\
tmp *= fudge;\
(X) = tmp;\
}\

/* -------------------------------------------------------------------- */
/* Fractal (once per iteration) routines */
/* -------------------------------------------------------------------- */
static double xt, yt, t2;

/* Raise complex number (base) to the (exp) power, storing the result
** in complex (result).
*/
void cpower(CMPLX *base, int exp, CMPLX *result)
{
xt = base->x; yt = base->y;

if (exp & 1)
{
result->x = xt;
result->y = yt;
}
else
{
result->x = 1.0;
result->y = 0.0;
}

exp >>= 1;
while (exp)
{
t2 = xt * xt - yt * yt;
yt = 2 * xt * yt;
xt = t2;

if (exp & 1)
{
t2 = xt * result->x - yt * result->y;
result->y = result->y * xt + yt * result->x;
result->x = t2;
}
exp >>= 1;
}
}
/* long version */
static long lxt, lyt, lt1, lt2;
lcpower(LCMPLX *base, int exp, LCMPLX *result, int bitshift)
{
static long maxarg;
maxarg = 64L<
overflow = 0;
lxt = base->x; lyt = base->y;

if (exp & 1)
{
result->x = lxt;
result->y = lyt;
}
else
{
result->x = 1L< result->y = 0L;
}

exp >>= 1;
while (exp)
{
/*
if(labs(lxt) >= maxarg || labs(lyt) >= maxarg)
return(-1);
*/
lt2 = multiply(lxt, lxt, bitshift) - multiply(lyt,lyt,bitshift);
lyt = multiply(lxt,lyt,bitshiftless1);
if(overflow)
return(overflow);
lxt = lt2;

if (exp & 1)
{
lt2 = multiply(lxt,result->x, bitshift) - multiply(lyt,result->y,bitshift);
result->y = multiply(result->y,lxt,bitshift) + multiply(lyt,result->x,bitshift);
result->x = lt2;
}
exp >>= 1;
}
if(result->x == 0 && result->y == 0)
overflow = 1;
return(overflow);
}

z_to_the_z(CMPLX *z, CMPLX *out)
{
static CMPLX tmp1,tmp2;
/* raises complex z to the z power */
int errno_xxx;
errno_xxx = 0;

if(fabs(z->x) < DBL_EPSILON) return(-1);

/* log(x + iy) = 1/2(log(x*x + y*y) + i(arc_tan(y/x)) */
tmp1.x = .5*log(sqr(z->x)+sqr(z->y));

/* the fabs in next line added to prevent discontinuity in image */
tmp1.y = atan(fabs(z->y/z->x));

/* log(z)*z */
tmp2.x = tmp1.x * z->x - tmp1.y * z->y;
tmp2.y = tmp1.x * z->y + tmp1.y * z->x;

/* z*z = e**(log(z)*z) */
/* e**(x + iy) = e**x * (cos(y) + isin(y)) */

tmpexp = exp(tmp2.x);

FPUsincos(&tmp2.y,&siny,&cosy);
out->x = tmpexp*cosy;
out->y = tmpexp*siny;
return(errno_xxx);
}

/* Distance of complex z from unit circle */
#define DIST1(z) (((z).x-1.0)*((z).x-1.0)+((z).y)*((z).y))
#define LDIST1(z) (lsqr((((z).x)-fudge)) + lsqr(((z).y)))

#ifdef NEWTON
complex_mult(CMPLX arg1,CMPLX arg2,CMPLX *pz);
complex_div(CMPLX arg1,CMPLX arg2,CMPLX *pz);

int NewtonFractal()
{
static char start=1;
if(start)
{
printf("c version");
start = 0;
}
cpower(&old, degree-1, &tmp);
complex_mult(tmp, old, &new);

if (DIST1(new) < threshold)
{
if(fractype==NEWTBASIN)
{
int tmpcolor;
int i;
tmpcolor = -1;
/* this code determines which degree-th root of root the
Newton formula converges to. The roots of a 1 are
distributed on a circle of radius 1 about the origin. */
for(i=0;i /* color in alternating shades with iteration according to
which root of 1 it converged to */
if(distance(roots[i],old) < threshold)
{
/* tmpcolor = 1+(i&7)+((color&1)<<3); */
tmpcolor = 1+i;
break;
}
if(tmpcolor == -1)
color = maxcolor;
else
color = tmpcolor;
}
return(1);
}
new.x = d1overd * new.x + roverd;
new.y *= d1overd;

/* Watch for divide underflow */
if ((t2 = tmp.x * tmp.x + tmp.y * tmp.y) < FLT_MIN)
return(1);
else
{
t2 = 1.0 / t2;
old.x = t2 * (new.x * tmp.x + new.y * tmp.y);
old.y = t2 * (new.y * tmp.x - new.x * tmp.y);
}
return(0);
}


complex_mult(arg1,arg2,pz)
CMPLX arg1,arg2,*pz;
{
pz->x = arg1.x*arg2.x - arg1.y*arg2.y;
pz->y = arg1.x*arg2.y+arg1.y*arg2.x;
return(0);
}

complex_div(numerator,denominator,pout)
CMPLX numerator,denominator,*pout;
{
double mod;
if((mod = modulus(denominator)) < FLT_MIN)
return(1);
conjugate(&denominator);
complex_mult(numerator,denominator,pout);
pout->x = pout->x/mod;
pout->y = pout->y/mod;
return(0);
}


lcomplex_mult(arg1,arg2,pz,bitshift)
LCMPLX arg1,arg2,*pz;
int bitshift;
{
overflow = 0;
pz->x = multiply(arg1.x,arg2.x,bitshift) - multiply(arg1.y,arg2.y,bitshift);
pz->y = multiply(arg1.x,arg2.y,bitshift) + multiply(arg1.y,arg2.x,bitshift);
return(overflow);
}

#endif

#define MPCmod(m) (pMPadd(pMPmul((m).x, (m).x), pMPmul((m).y, (m).y)))
struct MPC mpcold, mpcnew, mpctmp, mpctmp1;
struct MP mproverd, mpd1overd, mpthreshold,sqrmpthreshold;
struct MP mpt2;
struct MP mpone;
extern struct MPC MPCone;
extern int MPOverflow;
int MPCNewtonFractal()
{
MPOverflow = 0;
mpctmp = MPCpow(mpcold,degree-1);

mpcnew.x = pMPsub(pMPmul(mpctmp.x,mpcold.x),pMPmul(mpctmp.y,mpcold.y));
mpcnew.y = pMPadd(pMPmul(mpctmp.x,mpcold.y),pMPmul(mpctmp.y,mpcold.x));

mpctmp1.x = pMPsub(mpcnew.x, MPCone.x);
mpctmp1.y = pMPsub(mpcnew.y, MPCone.y);

if(pMPcmp(MPCmod(mpctmp1),mpthreshold)< 0)
{
if(fractype==MPNEWTBASIN)
{
int tmpcolor;
int i;
tmpcolor = -1;
for(i=0;i if(pMPcmp(MPdistance(MPCroots[i],mpcold),mpthreshold) < 0)
{
if(basin==2)
tmpcolor = 1+(i&7) + ((color&1)<<3);
else
tmpcolor = 1+i;
break;
}
if(tmpcolor == -1)
color = maxcolor;
else
color = tmpcolor;
}
return(1);
}

mpcnew.x = pMPadd(pMPmul(mpd1overd,mpcnew.x),mproverd);
mpcnew.y = pMPmul(mpcnew.y,mpd1overd);

mpt2 = MPCmod(mpctmp);
mpt2 = pMPdiv(mpone,mpt2);

mpcold.x = pMPmul(mpt2,(pMPadd(pMPmul(mpcnew.x,mpctmp.x),pMPmul(mpcnew.y,mpctmp.y))));
mpcold.y = pMPmul(mpt2,(pMPsub(pMPmul(mpcnew.y,mpctmp.x),pMPmul(mpcnew.x,mpctmp.y))));

new.x = *pMP2d(mpcold.x);
new.y = *pMP2d(mpcold.y);
return(MPOverflow);
}


Barnsley1Fractal()
{
/* Barnsley's Mandelbrot type M1 from "Fractals
Everywhere" by Michael Barnsley, p. 322 */

/* calculate intermediate products */
oldxinitx = multiply(lold.x, longparm->x, bitshift);
oldyinity = multiply(lold.y, longparm->y, bitshift);
oldxinity = multiply(lold.x, longparm->y, bitshift);
oldyinitx = multiply(lold.y, longparm->x, bitshift);
/* orbit calculation */
if(lold.x >= 0)
{
lnew.x = (oldxinitx - longparm->x - oldyinity);
lnew.y = (oldyinitx - longparm->y + oldxinity);
}
else
{
lnew.x = (oldxinitx + longparm->x - oldyinity);
lnew.y = (oldyinitx + longparm->y + oldxinity);
}
return(longbailout());
}

Barnsley1FPFractal()
{
/* Barnsley's Mandelbrot type M1 from "Fractals
Everywhere" by Michael Barnsley, p. 322 */

/* calculate intermediate products */
foldxinitx = old.x * floatparm->x;
foldyinity = old.y * floatparm->y;
foldxinity = old.x * floatparm->y;
foldyinitx = old.y * floatparm->x;
/* orbit calculation */
if(old.x >= 0)
{
new.x = (foldxinitx - floatparm->x - foldyinity);
new.y = (foldyinitx - floatparm->y + foldxinity);
}
else
{
new.x = (foldxinitx + floatparm->x - foldyinity);
new.y = (foldyinitx + floatparm->y + foldxinity);
}
return(floatbailout());
}

Barnsley2Fractal()
{
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 331, example 4.2 */

/* calculate intermediate products */
oldxinitx = multiply(lold.x, longparm->x, bitshift);
oldyinity = multiply(lold.y, longparm->y, bitshift);
oldxinity = multiply(lold.x, longparm->y, bitshift);
oldyinitx = multiply(lold.y, longparm->x, bitshift);

/* orbit calculation */
if(oldxinity + oldyinitx >= 0)
{
lnew.x = oldxinitx - longparm->x - oldyinity;
lnew.y = oldyinitx - longparm->y + oldxinity;
}
else
{
lnew.x = oldxinitx + longparm->x - oldyinity;
lnew.y = oldyinitx + longparm->y + oldxinity;
}
return(longbailout());
}

Barnsley2FPFractal()
{
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 331, example 4.2 */

/* calculate intermediate products */
foldxinitx = old.x * floatparm->x;
foldyinity = old.y * floatparm->y;
foldxinity = old.x * floatparm->y;
foldyinitx = old.y * floatparm->x;

/* orbit calculation */
if(foldxinity + foldyinitx >= 0)
{
new.x = foldxinitx - floatparm->x - foldyinity;
new.y = foldyinitx - floatparm->y + foldxinity;
}
else
{
new.x = foldxinitx + floatparm->x - foldyinity;
new.y = foldyinitx + floatparm->y + foldxinity;
}
return(floatbailout());
}

JuliaFractal()
{
/* used for C prototype of fast integer math routines for classic
Mandelbrot and Julia */
lnew.x = ltempsqrx - ltempsqry + longparm->x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + longparm->y;
return(longbailout());
}

JuliafpFractal()
{
/* floating point version of classical Mandelbrot/Julia */
new.x = tempsqrx - tempsqry + floatparm->x;
new.y = 2.0 * old.x * old.y + floatparm->y;
return(floatbailout());
}

LambdaFPFractal()
{
/* variation of classical Mandelbrot/Julia */

tempsqrx = old.x - old.x * old.x + old.y * old.y;
tempsqry = old.y - old.y * old.x * 2;

new.x = floatparm->x * tempsqrx - floatparm->y * tempsqry;
new.y = floatparm->x * tempsqry + floatparm->y * tempsqrx;
return(floatbailout());
}

LambdaFractal()
{
/* variation of classical Mandelbrot/Julia */

/* in complex math) temp = Z * (1-Z) */
ltempsqrx = lold.x - ltempsqrx + ltempsqry;
ltempsqry = lold.y
- multiply(lold.y, lold.x, bitshiftless1);
/* (in complex math) Z = Lambda * Z */
lnew.x = multiply(longparm->x, ltempsqrx, bitshift)
- multiply(longparm->y, ltempsqry, bitshift);
lnew.y = multiply(longparm->x, ltempsqry, bitshift)
+ multiply(longparm->y, ltempsqrx, bitshift);
return(longbailout());
}

SierpinskiFractal()
{
/* following code translated from basic - see "Fractals
Everywhere" by Michael Barnsley, p. 251, Program 7.1.1 */
lnew.x = (lold.x << 1); /* new.x = 2 * old.x */
lnew.y = (lold.y << 1); /* new.y = 2 * old.y */
if(lold.y > ltmp.y) /* if old.y > .5 */
lnew.y = lnew.y - ltmp.x; /* new.y = 2 * old.y - 1 */
else if(lold.x > ltmp.y) /* if old.x > .5 */
lnew.x = lnew.x - ltmp.x; /* new.x = 2 * old.x - 1 */
/* end barnsley code */
return(longbailout());
}

SierpinskiFPFractal()
{
/* following code translated from basic - see "Fractals
Everywhere" by Michael Barnsley, p. 251, Program 7.1.1 */

new.x = old.x + old.x;
new.y = old.y + old.y;
if(old.y > .5)
new.y = new.y - 1;
else if (old.x > .5)
new.x = new.x - 1;

/* end barnsley code */
return(floatbailout());
}

LambdaexponentFractal()
{
/* found this in "Science of Fractal Images" */
FLOATEXPBAILOUT();
FPUsincos (&old.y,&siny,&cosy);

if (old.x >= rqlim && cosy >= 0.0) return(1);
tmpexp = exp(old.x);
tmp.x = tmpexp*cosy;
tmp.y = tmpexp*siny;

/*multiply by lamda */
new.x = floatparm->x*tmp.x - floatparm->y*tmp.y;
new.y = floatparm->y*tmp.x + floatparm->x*tmp.y;
old = new;
return(0);
}

LongLambdaexponentFractal()
{
/* found this in "Science of Fractal Images" */
LONGEXPBAILOUT();

SinCos086 (lold.y, &lsiny, &lcosy);

if (lold.x >= llimit && lcosy >= 0L) return(1);
longtmp = Exp086(lold.x);

ltmp.x = multiply(longtmp, lcosy, bitshift);
ltmp.y = multiply(longtmp, lsiny, bitshift);

lnew.x = multiply(longparm->x, ltmp.x, bitshift)
- multiply(longparm->y, ltmp.y, bitshift);
lnew.y = multiply(longparm->x, ltmp.y, bitshift)
+ multiply(longparm->y, ltmp.x, bitshift);
lold = lnew;
return(0);
}

FloatTrigPlusExponentFractal()
{
/* another Scientific American biomorph type */
/* z(n+1) = e**z(n) + trig(z(n)) + C */

if (fabs(old.x) >= 6.4e2) return(1); /* DOMAIN errors */
tmpexp = exp(old.x);
FPUsincos (&old.y,&siny,&cosy);
CMPLXtrig0(old,new);

/*new = trig(old) + e**old + C */
new.x += tmpexp*cosy + floatparm->x;
new.y += tmpexp*siny + floatparm->y;
return(floatbailout());
}


LongTrigPlusExponentFractal()
{
/* calculate exp(z) */

/* domain check for fast transcendental functions */
TRIG16CHECK(lold.x);
TRIG16CHECK(lold.y);

longtmp = Exp086(lold.x);
SinCos086 (lold.y, &lsiny, &lcosy);
LCMPLXtrig0(lold,lnew);
lnew.x += multiply(longtmp, lcosy, bitshift) + longparm->x;
lnew.y += multiply(longtmp, lsiny, bitshift) + longparm->y;
return(longbailout());
}

MarksLambdaFractal()
{
/* Mark Peterson's variation of "lambda" function */

/* Z1 = (C^(exp-1) * Z**2) + C */
ltmp.x = ltempsqrx - ltempsqry;
ltmp.y = multiply(lold.x ,lold.y ,bitshiftless1);

lnew.x = multiply(lcoefficient.x, ltmp.x, bitshift)
- multiply(lcoefficient.y, ltmp.y, bitshift) + longparm->x;
lnew.y = multiply(lcoefficient.x, ltmp.y, bitshift)
+ multiply(lcoefficient.y, ltmp.x, bitshift) + longparm->y;

return(longbailout());
}


long XXOne, FgOne, FgTwo;

UnityFractal()
{
/* brought to you by Mark Peterson - you won't find this in any fractal
books unless they saw it here first - Mark invented it! */
XXOne = multiply(lold.x, lold.x, bitshift) + multiply(lold.y, lold.y, bitshift);
if((XXOne > FgTwo) || (labs(XXOne - FgOne) < delmin))
return(1);
lold.y = multiply(FgTwo - XXOne, lold.x, bitshift);
lold.x = multiply(FgTwo - XXOne, lold.y, bitshift);
lnew=lold; /* TW added this line */
return(0);
}

#define XXOne new.x

UnityfpFractal()
{
/* brought to you by Mark Peterson - you won't find this in any fractal
books unless they saw it here first - Mark invented it! */

XXOne = sqr(old.x) + sqr(old.y);
if((XXOne > 2.0) || (fabs(XXOne - 1.0) < ddelmin))
return(1);
old.y = (2.0 - XXOne)* old.x;
old.x = (2.0 - XXOne)* old.y;
new=old; /* TW added this line */
return(0);
}

#undef XXOne

Mandel4Fractal()
{
/* By writing this code, Bert has left behind the excuse "don't
know what a fractal is, just know how to make'em go fast".
Bert is hereby declared a bonafide fractal expert! Supposedly
this routine calculates the Mandelbrot/Julia set based on the
polynomial z**4 + lambda, but I wouldn't know -- can't follow
all that integer math speedup stuff - Tim */

/* first, compute (x + iy)**2 */
lnew.x = ltempsqrx - ltempsqry;
lnew.y = multiply(lold.x, lold.y, bitshiftless1);
if (longbailout()) return(1);

/* then, compute ((x + iy)**2)**2 + lambda */
lnew.x = ltempsqrx - ltempsqry + longparm->x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + longparm->y;
return(longbailout());
}

floatZtozPluszpwrFractal()
{
cpower(&old,(int)param[2],&new);
old = ComplexPower(old,old);
new.x = new.x + old.x +floatparm->x;
new.y = new.y + old.y +floatparm->y;
return(floatbailout());
}

longZpowerFractal()
{
if(lcpower(&lold,c_exp,&lnew,bitshift))
lnew.x = lnew.y = 8L< lnew.x += longparm->x;
lnew.y += longparm->y;
return(longbailout());
}
floatZpowerFractal()
{
cpower(&old,c_exp,&new);
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}

Barnsley3Fractal()
{
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 292, example 4.1 */

/* calculate intermediate products */
oldxinitx = multiply(lold.x, lold.x, bitshift);
oldyinity = multiply(lold.y, lold.y, bitshift);
oldxinity = multiply(lold.x, lold.y, bitshift);

/* orbit calculation */
if(lold.x > 0)
{
lnew.x = oldxinitx - oldyinity - fudge;
lnew.y = oldxinity << 1;
}
else
{
lnew.x = oldxinitx - oldyinity - fudge
+ multiply(longparm->x,lold.x,bitshift);
lnew.y = oldxinity <<1;

/* This term added by Tim Wegner to make dependent on the
imaginary part of the parameter. (Otherwise Mandelbrot
is uninteresting. */
lnew.y += multiply(longparm->y,lold.x,bitshift);
}
return(longbailout());
}

Barnsley3FPFractal()
{
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 292, example 4.1 */


/* calculate intermediate products */
foldxinitx = old.x * old.x;
foldyinity = old.y * old.y;
foldxinity = old.x * old.y;

/* orbit calculation */
if(old.x > 0)
{
new.x = foldxinitx - foldyinity - 1.0;
new.y = foldxinity * 2;
}
else
{
new.x = foldxinitx - foldyinity -1.0 + floatparm->x * old.x;
new.y = foldxinity * 2;

/* This term added by Tim Wegner to make dependent on the
imaginary part of the parameter. (Otherwise Mandelbrot
is uninteresting. */
new.y += floatparm->y * old.x;
}
return(floatbailout());
}

TrigPlusZsquaredFractal()
{
/* From Scientific American, July 1989 */
/* A Biomorph */
/* z(n+1) = trig(z(n))+z(n)**2+C */
LCMPLXtrig0(lold,lnew);
lnew.x += ltempsqrx - ltempsqry + longparm->x;
lnew.y += multiply(lold.x, lold.y, bitshiftless1) + longparm->y;
return(longbailout());
}

TrigPlusZsquaredfpFractal()
{
/* From Scientific American, July 1989 */
/* A Biomorph */
/* z(n+1) = trig(z(n))+z(n)**2+C */

CMPLXtrig0(old,new);
new.x += tempsqrx - tempsqry + floatparm->x;
new.y += 2.0 * old.x * old.y + floatparm->y;
return(floatbailout());
}

PopcornFractal()
{
extern int row;
tmp = old;
tmp.x *= 3.0;
tmp.y *= 3.0;
FPUsincos(&tmp.x,&sinx,&cosx);
FPUsincos(&tmp.y,&siny,&cosy);
tmp.x = sinx/cosx + old.x;
tmp.y = siny/cosy + old.y;
FPUsincos(&tmp.x,&sinx,&cosx);
FPUsincos(&tmp.y,&siny,&cosy);
new.x = old.x - .05*siny;
new.y = old.y - .05*sinx;
/*
new.x = old.x - .05*sin(old.y+tan(3*old.y));
new.y = old.y - .05*sin(old.x+tan(3*old.x));
*/
if(plot == noplot)
{
plot_orbit(new.x,new.y,1+row%colors);
old = new;
}
else
/* FLOATBAILOUT(); */
/* PB The above line was weird, not what it seems to be! But, bracketing
it or always doing it (either of which seem more likely to be what
was intended) changes the image for the worse, so I'm not touching it.
Same applies to int form in next routine. */
/* PB later: recoded inline, still leaving it weird */
tempsqrx = sqr(new.x);
tempsqry = sqr(new.y);
if((magnitude = tempsqrx + tempsqry) >= rqlim) return(1);
old = new;
return(0);
}

LPopcornFractal()
{
static long O5 = (long)(.05*(1L<<16));
extern int row;
ltmp = lold;
ltmp.x *= 3L;
ltmp.y *= 3L;
LTRIGARG(ltmp.x);
LTRIGARG(ltmp.y);
SinCos086(ltmp.x,&lsinx,&lcosx);
SinCos086(ltmp.y,&lsiny,&lcosy);
ltmp.x = divide(lsinx,lcosx,bitshift) + lold.x;
ltmp.y = divide(lsiny,lcosy,bitshift) + lold.y;
LTRIGARG(ltmp.x);
LTRIGARG(ltmp.y);
SinCos086(ltmp.x,&lsinx,&lcosx);
SinCos086(ltmp.y,&lsiny,&lcosy);
lnew.x = lold.x - multiply(O5,lsiny,bitshift);
lnew.y = lold.y - multiply(O5,lsinx,bitshift);
if(plot == noplot)
{
iplot_orbit(lnew.x,lnew.y,1+row%colors);
lold = lnew;
}
else
LONGBAILOUT();
/* PB above still the old way, is weird, see notes in FP popcorn case */
return(0);
}

int MarksCplxMand(void)
{
tmp.x = tempsqrx - tempsqry;
tmp.y = 2*old.x*old.y;
FPUcplxmul(&tmp, &Coefficient, &new);
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}

int SpiderfpFractal(void)
{
/* Spider(XAXIS) { c=z=pixel: z=z*z+c; c=c/2+z, |z|<=4 } */
new.x = tempsqrx - tempsqry + tmp.x;
new.y = 2 * old.x * old.y + tmp.y;
tmp.x = tmp.x/2 + new.x;
tmp.y = tmp.y/2 + new.y;
return(floatbailout());
}

SpiderFractal(void)
{
/* Spider(XAXIS) { c=z=pixel: z=z*z+c; c=c/2+z, |z|<=4 } */
lnew.x = ltempsqrx - ltempsqry + ltmp.x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + ltmp.y;
ltmp.x = (ltmp.x >> 1) + lnew.x;
ltmp.y = (ltmp.y >> 1) + lnew.y;
return(longbailout());
}

TetratefpFractal()
{
/* Tetrate(XAXIS) { c=z=pixel: z=c^z, |z|<=(P1+3) } */
new = ComplexPower(*floatparm,old);
return(floatbailout());
}

ZXTrigPlusZFractal()
{
/* z = (p1*z*trig(z))+p2*z */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(old) */
LCMPLXmult(lparm,ltmp,ltmp); /* ltmp = p1*trig(old) */
LCMPLXmult(lold,ltmp,ltmp2); /* ltmp2 = p1*old*trig(old) */
LCMPLXmult(lparm2,lold,ltmp); /* ltmp = p2*old */
LCMPLXadd(ltmp2,ltmp,lnew); /* lnew = p1*trig(old) + p2*old */
return(longbailout());
}

ScottZXTrigPlusZFractal()
{
/* z = (z*trig(z))+z */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(old) */
LCMPLXmult(lold,ltmp,lnew); /* lnew = old*trig(old) */
LCMPLXadd(lnew,lold,lnew); /* lnew = trig(old) + old */
return(longbailout());
}

SkinnerZXTrigSubZFractal()
{
/* z = (z*trig(z))-z */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(old) */
LCMPLXmult(lold,ltmp,lnew); /* lnew = old*trig(old) */
LCMPLXsub(lnew,lold,lnew); /* lnew = trig(old) - old */
return(longbailout());
}

ZXTrigPlusZfpFractal()
{
/* z = (p1*z*trig(z))+p2*z */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(parm,tmp,tmp); /* tmp = p1*trig(old) */
CMPLXmult(old,tmp,tmp2); /* tmp2 = p1*old*trig(old) */
CMPLXmult(parm2,old,tmp); /* tmp = p2*old */
CMPLXadd(tmp2,tmp,new); /* new = p1*trig(old) + p2*old */
return(floatbailout());
}

ScottZXTrigPlusZfpFractal()
{
/* z = (z*trig(z))+z */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(old,tmp,new); /* new = old*trig(old) */
CMPLXadd(new,old,new); /* new = trig(old) + old */
return(floatbailout());
}

SkinnerZXTrigSubZfpFractal()
{
/* z = (z*trig(z))-z */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(old,tmp,new); /* new = old*trig(old) */
CMPLXsub(new,old,new); /* new = trig(old) - old */
return(floatbailout());
}

Sqr1overTrigFractal()
{
/* z = sqr(1/trig(z)) */
LCMPLXtrig0(lold,lold);
LCMPLXrecip(lold,lold);
LCMPLXsqr(lold,lnew);
return(longbailout());
}

Sqr1overTrigfpFractal()
{
/* z = sqr(1/trig(z)) */
CMPLXtrig0(old,old);
CMPLXrecip(old,old);
CMPLXsqr(old,new);
return(floatbailout());
}

TrigPlusTrigFractal()
{
/* z = trig(0,z)*p1+trig1(z)*p2 */
LCMPLXtrig0(lold,ltmp);
LCMPLXmult(lparm,ltmp,ltmp);
LCMPLXtrig1(lold,ltmp2);
LCMPLXmult(lparm2,ltmp2,lold);
LCMPLXadd(ltmp,lold,lnew);
return(longbailout());
}

TrigPlusTrigfpFractal()
{
/* z = trig0(z)*p1+trig1(z)*p2 */
CMPLXtrig0(old,tmp);
CMPLXmult(parm,tmp,tmp);
CMPLXtrig1(old,old);
CMPLXmult(parm2,old,old);
CMPLXadd(tmp,old,new);
return(floatbailout());
}


ScottTrigPlusTrigFractal()
{
/* z = trig0(z)+trig1(z) */
LCMPLXtrig0(lold,ltmp);
LCMPLXtrig1(lold,lold);
LCMPLXadd(ltmp,lold,lnew);
return(longbailout());
}

ScottTrigPlusTrigfpFractal()
{
/* z = trig0(z)+trig1(z) */
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,tmp2);
CMPLXadd(tmp,tmp2,new);
return(floatbailout());
}

SkinnerTrigSubTrigFractal()
{
/* z = trig(0,z)-trig1(z) */
LCMPLXtrig0(lold,ltmp);
LCMPLXtrig1(lold,ltmp2);
LCMPLXsub(ltmp,ltmp2,lnew);
return(longbailout());
}

SkinnerTrigSubTrigfpFractal()
{
/* z = trig0(z)-trig1(z) */
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,tmp2);
CMPLXsub(tmp,tmp2,new);
return(floatbailout());
}


TrigXTrigfpFractal()
{
/* z = trig0(z)*trig1(z) */
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,old);
CMPLXmult(tmp,old,new);
return(floatbailout());
}

TrigXTrigFractal()
{
LCMPLX ltmp2;
/* z = trig0(z)*trig1(z) */
LCMPLXtrig0(lold,ltmp);
LCMPLXtrig1(lold,ltmp2);
LCMPLXmult(ltmp,ltmp2,lnew);
if(overflow)
TryFloatFractal(TrigXTrigfpFractal);
return(longbailout());
}

/* call float version of fractal if integer math overflow */
TryFloatFractal(int (*fpFractal)())
{
overflow=0;
/* lold had better not be changed! */
old.x = lold.x; old.x /= fudge;
old.y = lold.y; old.y /= fudge;
tempsqrx = sqr(old.x);
tempsqry = sqr(old.y);
fpFractal();
lnew.x = new.x/fudge;
lnew.y = new.y/fudge;
return(0);
}

/********************************************************************/
/* Next six orbit functions are one type - extra functions are */
/* special cases written for speed. */
/********************************************************************/

TrigPlusSqrFractal() /* generalization of Scott and Skinner types */
{
/* { z=pixel: z=(p1,p2)*trig(z)+(p3,p4)*sqr(z), |z| LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(lparm,ltmp,lnew); /* lnew = lparm*trig(lold) */
LCMPLXsqr_old(ltmp); /* ltmp = sqr(lold) */
LCMPLXmult(lparm2,ltmp,ltmp);/* ltmp = lparm2*sqr(lold) */
LCMPLXadd(lnew,ltmp,lnew); /* lnew = lparm*trig(lold)+lparm2*sqr(lold) */
return(longbailout());
}

TrigPlusSqrfpFractal() /* generalization of Scott and Skinner types */
{
/* { z=pixel: z=(p1,p2)*trig(z)+(p3,p4)*sqr(z), |z| CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(parm,tmp,new); /* new = parm*trig(old) */
CMPLXsqr_old(tmp); /* tmp = sqr(old) */
CMPLXmult(parm2,tmp,tmp2); /* tmp = parm2*sqr(old) */
CMPLXadd(new,tmp2,new); /* new = parm*trig(old)+parm2*sqr(old) */
return(floatbailout());
}

ScottTrigPlusSqrFractal()
{
/* { z=pixel: z=trig(z)+sqr(z), |z| LCMPLXtrig0(lold,lnew); /* lnew = trig(lold) */
LCMPLXsqr_old(ltmp); /* lold = sqr(lold) */
LCMPLXadd(ltmp,lnew,lnew); /* lnew = trig(lold)+sqr(lold) */
return(longbailout());
}

ScottTrigPlusSqrfpFractal() /* float version */
{
/* { z=pixel: z=sin(z)+sqr(z), |z| CMPLXtrig0(old,new); /* new = trig(old) */
CMPLXsqr_old(tmp); /* tmp = sqr(old) */
CMPLXadd(new,tmp,new); /* new = trig(old)+sqr(old) */
return(floatbailout());
}

SkinnerTrigSubSqrFractal()
{
/* { z=pixel: z=sin(z)-sqr(z), |z| LCMPLXtrig0(lold,lnew); /* lnew = trig(lold) */
LCMPLXsqr_old(ltmp); /* lold = sqr(lold) */
LCMPLXsub(lnew,ltmp,lnew); /* lnew = trig(lold)-sqr(lold) */
return(longbailout());
}

SkinnerTrigSubSqrfpFractal()
{
/* { z=pixel: z=sin(z)-sqr(z), |z| CMPLXtrig0(old,new); /* new = trig(old) */
CMPLXsqr_old(tmp); /* old = sqr(old) */
CMPLXsub(new,tmp,new); /* new = trig(old)-sqr(old) */
return(floatbailout());
}

TrigZsqrdfpFractal()
{
/* { z=pixel: z=trig(z*z), |z| CMPLXsqr_old(tmp);
CMPLXtrig0(tmp,new);
return(floatbailout());
}

TrigZsqrdFractal() /* this doesn't work very well */
{
/* { z=pixel: z=trig(z*z), |z| LCMPLXsqr_old(ltmp);
LCMPLXtrig0(ltmp,lnew);
if(overflow)
TryFloatFractal(TrigZsqrdfpFractal);
return(longbailout());
}

SqrTrigFractal()
{
/* { z=pixel: z=sqr(trig(z)), |z| LCMPLXtrig0(lold,ltmp);
LCMPLXsqr(ltmp,lnew);
return(longbailout());
}

SqrTrigfpFractal()
{
/* SZSB(XYAXIS) { z=pixel, TEST=(p1+3): z=sin(z)*sin(z), |z| CMPLXtrig0(old,tmp);
CMPLXsqr(tmp,new);
return(floatbailout());
}


Magnet1Fractal() /* Z = ((Z**2 + C - 1)/(2Z + C - 2))**2 */
{ /* In "Beauty of Fractals", code by Kev Allen. */
CMPLX top, bot, tmp;
double div;

top.x = tempsqrx - tempsqry + floatparm->x - 1; /* top = Z**2+C-1 */
top.y = old.x * old.y;
top.y = top.y + top.y + floatparm->y;

bot.x = old.x + old.x + floatparm->x - 2; /* bot = 2*Z+C-2 */
bot.y = old.y + old.y + floatparm->y;

div = bot.x*bot.x + bot.y*bot.y; /* tmp = top/bot */
if (div < FLT_MIN) return(1);
tmp.x = (top.x*bot.x + top.y*bot.y)/div;
tmp.y = (top.y*bot.x - top.x*bot.y)/div;

new.x = (tmp.x + tmp.y) * (tmp.x - tmp.y); /* Z = tmp**2 */
new.y = tmp.x * tmp.y;
new.y += new.y;

return(floatbailout());
}

Magnet2Fractal() /* Z = ((Z**3 + 3(C-1)Z + (C-1)(C-2) ) / */
/* (3Z**2 + 3(C-2)Z + (C-1)(C-2)+1) )**2 */
{ /* In "Beauty of Fractals", code by Kev Allen. */
CMPLX top, bot, tmp;
double div;

top.x = old.x * (tempsqrx-tempsqry-tempsqry-tempsqry + T_Cm1.x)
- old.y * T_Cm1.y + T_Cm1Cm2.x;
top.y = old.y * (tempsqrx+tempsqrx+tempsqrx-tempsqry + T_Cm1.x)
+ old.x * T_Cm1.y + T_Cm1Cm2.y;

bot.x = tempsqrx - tempsqry;
bot.x = bot.x + bot.x + bot.x
+ old.x * T_Cm2.x - old.y * T_Cm2.y
+ T_Cm1Cm2.x + 1.0;
bot.y = old.x * old.y;
bot.y += bot.y;
bot.y = bot.y + bot.y + bot.y
+ old.x * T_Cm2.y + old.y * T_Cm2.x
+ T_Cm1Cm2.y;

div = bot.x*bot.x + bot.y*bot.y; /* tmp = top/bot */
if (div < FLT_MIN) return(1);
tmp.x = (top.x*bot.x + top.y*bot.y)/div;
tmp.y = (top.y*bot.x - top.x*bot.y)/div;

new.x = (tmp.x + tmp.y) * (tmp.x - tmp.y); /* Z = tmp**2 */
new.y = tmp.x * tmp.y;
new.y += new.y;

return(floatbailout());
}

LambdaTrigFractal()
{
LONGXYTRIGBAILOUT();
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(*longparm,ltmp,lnew); /* lnew = longparm*trig(lold) */
lold = lnew;
return(0);
}

LambdaTrigfpFractal()
{
FLOATXYTRIGBAILOUT();
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(*floatparm,tmp,new); /* new = longparm*trig(old) */
old = new;
return(0);
}

/* bailouts are different for different trig functions */
LambdaTrigFractal1()
{
LONGTRIGBAILOUT(); /* sin,cos */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(*longparm,ltmp,lnew); /* lnew = longparm*trig(lold) */
lold = lnew;
return(0);
}

LambdaTrigfpFractal1()
{
FLOATTRIGBAILOUT(); /* sin,cos */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(*floatparm,tmp,new); /* new = longparm*trig(old) */
old = new;
return(0);
}

LambdaTrigFractal2()
{
LONGHTRIGBAILOUT(); /* sinh,cosh */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(*longparm,ltmp,lnew); /* lnew = longparm*trig(lold) */
lold = lnew;
return(0);
}

LambdaTrigfpFractal2()
{
FLOATHTRIGBAILOUT(); /* sinh,cosh */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(*floatparm,tmp,new); /* new = longparm*trig(old) */
old = new;
return(0);
}

ManOWarFractal()
{
/* From Art Matrix via Lee Skinner */
lnew.x = ltempsqrx - ltempsqry + ltmp.x + longparm->x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + ltmp.y + longparm->y;
ltmp = lold;
return(longbailout());
}

ManOWarfpFractal()
{
/* From Art Matrix via Lee Skinner */
new.x = tempsqrx - tempsqry + tmp.x + floatparm->x;
new.y = 2.0 * old.x * old.y + tmp.y + floatparm->y;
tmp = old;
return(floatbailout());
}


/* -------------------------------------------------------------------- */
/* Initialization (once per pixel) routines */
/* -------------------------------------------------------------------- */

#if 0
/* this code translated to asm - lives in newton.asm */
/* transform points with reciprocal function */
void invertz1(CMPLX *z)
{
z->x = dx0[col]+dx1[row];
z->y = dy0[row]+dy1[col];
z->x -= f_xcenter; z->y -= f_ycenter; /* Normalize values to center of circle */

tempsqrx = sqr(z->x) + sqr(z->y); /* Get old radius */
if(fabs(tempsqrx) > FLT_MIN)
tempsqrx = f_radius / tempsqrx;
else
tempsqrx = FLT_MAX; /* a big number, but not TOO big */
z->x *= tempsqrx; z->y *= tempsqrx; /* Perform inversion */
z->x += f_xcenter; z->y += f_ycenter; /* Renormalize */
}
#endif

int long_julia_per_pixel()
{
/* integer julia types */
/* lambda */
/* barnsleyj1 */
/* barnsleyj2 */
/* sierpinski */
if(invert)
{
/* invert */
invertz2(&old);

/* watch out for overflow */
if(sqr(old.x)+sqr(old.y) >= 127)
{
old.x = 8; /* value to bail out in one iteration */
old.y = 8;
}

/* convert to fudged longs */
lold.x = old.x*fudge;
lold.y = old.y*fudge;
}
else
{
lold.x = lx0[col]+lx1[row];
lold.y = ly0[row]+ly1[col];
}
return(0);
}

int long_mandel_per_pixel()
{
/* integer mandel types */
/* barnsleym1 */
/* barnsleym2 */
linit.x = lx0[col]+lx1[row];

if(invert)
{
/* invert */
invertz2(&init);

/* watch out for overflow */
if(sqr(init.x)+sqr(init.y) >= 127)
{
init.x = 8; /* value to bail out in one iteration */
init.y = 8;
}

/* convert to fudged longs */
linit.x = init.x*fudge;
linit.y = init.y*fudge;
}

if(useinitorbit == 1)
lold = linitorbit;
else
lold = linit;

lold.x += lparm.x; /* initial pertubation of parameters set */
lold.y += lparm.y;
return(1); /* 1st iteration has been done */
}

int julia_per_pixel()
{
/* julia */

if(invert)
{
/* invert */
invertz2(&old);

/* watch out for overflow */
if(bitshift <= 24)
if (sqr(old.x)+sqr(old.y) >= 127)
{
old.x = 8; /* value to bail out in one iteration */
old.y = 8;
}
if(bitshift > 24)
if (sqr(old.x)+sqr(old.y) >= 4.0)
{
old.x = 2; /* value to bail out in one iteration */
old.y = 2;
}

/* convert to fudged longs */
lold.x = old.x*fudge;
lold.y = old.y*fudge;
}
else
{
lold.x = lx0[col]+lx1[row];
lold.y = ly0[row]+ly1[col];
}

ltempsqrx = multiply(lold.x, lold.x, bitshift);
ltempsqry = multiply(lold.y, lold.y, bitshift);
ltmp = lold;
return(0);
}

int mandel_per_pixel()
{
/* mandel */

if(invert)
{
invertz2(&init);

/* watch out for overflow */
if(bitshift <= 24)
if (sqr(init.x)+sqr(init.y) >= 127)
{
init.x = 8; /* value to bail out in one iteration */
init.y = 8;
}
if(bitshift > 24)
if (sqr(init.x)+sqr(init.y) >= 4)
{
init.x = 2; /* value to bail out in one iteration */
init.y = 2;
}

/* convert to fudged longs */
linit.x = init.x*fudge;
linit.y = init.y*fudge;
}
else
linit.x = lx0[col]+lx1[row];
switch (fractype)
{
case MANDELLAMBDA: /* Critical Value 0.5 + 0.0i */
lold.x = FgHalf;
lold.y = 0;
break;
default:
lold = linit;
break;
}

/* alter init value */
if(useinitorbit == 1)
lold = linitorbit;
else if(useinitorbit == 2)
lold = linit;

if(inside == -60 || inside == -61)
{
/* kludge to match "Beauty of Fractals" picture since we start
Mandelbrot iteration with init rather than 0 */
lold.x = lparm.x; /* initial pertubation of parameters set */
lold.y = lparm.y;
color = -1;
}
else
{
lold.x += lparm.x; /* initial pertubation of parameters set */
lold.y += lparm.y;
}
ltmp = linit; /* for spider */
ltempsqrx = multiply(lold.x, lold.x, bitshift);
ltempsqry = multiply(lold.y, lold.y, bitshift);
return(1); /* 1st iteration has been done */
}


int marksmandel_per_pixel()
{
/* marksmandel */

if(invert)
{
invertz2(&init);

/* watch out for overflow */
if(sqr(init.x)+sqr(init.y) >= 127)
{
init.x = 8; /* value to bail out in one iteration */
init.y = 8;
}

/* convert to fudged longs */
linit.x = init.x*fudge;
linit.y = init.y*fudge;
}
else
linit.x = lx0[col]+lx1[row];

if(useinitorbit == 1)
lold = linitorbit;
else
lold = linit;

lold.x += lparm.x; /* initial pertubation of parameters set */
lold.y += lparm.y;

if(c_exp > 3)
lcpower(&lold,c_exp-1,&lcoefficient,bitshift);
else if(c_exp == 3) {
lcoefficient.x = multiply(lold.x, lold.x, bitshift)
- multiply(lold.y, lold.y, bitshift);
lcoefficient.y = multiply(lold.x, lold.y, bitshiftless1);
}
else if(c_exp == 2)
lcoefficient = lold;
else if(c_exp < 2) {
lcoefficient.x = 1L << bitshift;
lcoefficient.y = 0L;
}

ltempsqrx = multiply(lold.x, lold.x, bitshift);
ltempsqry = multiply(lold.y, lold.y, bitshift);
return(1); /* 1st iteration has been done */
}

int mandelfp_per_pixel()
{
/* floating point mandelbrot */
/* mandelfp */

if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
switch (fractype)
{
case MAGNET2M:
FloatPreCalcMagnet2();
case MAGNET1M: /* Crit Val Zero both, but neither */
old.x = old.y = 0.0; /* is of the form f(Z,C) = Z*g(Z)+C */
break;
case MANDELLAMBDAFP: /* Critical Value 0.5 + 0.0i */
old.x = 0.5;
old.y = 0.0;
break;
default:
old = init;
break;
}

/* alter init value */
if(useinitorbit == 1)
old = initorbit;
else if(useinitorbit == 2)
old = init;

if(inside == -60 || inside == -61)
{
/* kludge to match "Beauty of Fractals" picture since we start
Mandelbrot iteration with init rather than 0 */
old.x = parm.x; /* initial pertubation of parameters set */
old.y = parm.y;
color = -1;
}
else
{
old.x += parm.x;
old.y += parm.y;
}
tmp = init; /* for spider */
tempsqrx = sqr(old.x); /* precalculated value for regular Mandelbrot */
tempsqry = sqr(old.y);
return(1); /* 1st iteration has been done */
}

int juliafp_per_pixel()
{
/* floating point julia */
/* juliafp */
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
tempsqrx = sqr(old.x); /* precalculated value for regular Julia */
tempsqry = sqr(old.y);
tmp = old;
return(0);
}

int MPCjulia_per_pixel()
{
/* floating point julia */
/* juliafp */
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
mpcold.x = pd2MP(old.x);
mpcold.y = pd2MP(old.y);
return(0);
}

int othermandelfp_per_pixel()
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];

if(useinitorbit == 1)
old = initorbit;
else
old = init;

old.x += parm.x; /* initial pertubation of parameters set */
old.y += parm.y;

return(1); /* 1st iteration has been done */
}

int otherjuliafp_per_pixel()
{
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
return(0);
}

int trigmandelfp_per_pixel()
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];


if(useinitorbit == 1)
old = initorbit;
else
old = init;

old.x += parm.x; /* initial pertubation of parameters set */
old.y += parm.y;
CMPLXtrig0(old,old);
return(1); /* 1st iteration has been done */
}

int trigjuliafp_per_pixel()
{
/* for tetrated types */
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
CMPLXtrig0(old,old);
return(0);
}

int trigXtrigmandelfp_per_pixel()
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];

if(useinitorbit == 1)
old = initorbit;
else
old = init;

old.x += parm.x; /* initial pertubation of parameters set */
old.y += parm.y;
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,tmp2);
CMPLXmult(tmp,tmp2,old);
return(1); /* 1st iteration has been done */
}

int trigXtrigjuliafp_per_pixel()
{
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,tmp2);
CMPLXmult(tmp,tmp2,old);
return(0);
}

int MarksCplxMandperp(void)
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
old.x = init.x + parm.x; /* initial pertubation of parameters set */
old.y = init.y + parm.y;
tempsqrx = sqr(old.x); /* precalculated value */
tempsqry = sqr(old.y);
Coefficient = ComplexPower(init, pwr);
return(1);
}

/* -------------------------------------------------------------------- */
/* Setup (once per fractal image) routines */
/* -------------------------------------------------------------------- */

MandelSetup() /* Mandelbrot Routine */
{
if (debugflag != 90 && ! invert && decomp[0] == 0 && rqlim <= 4.0
&& bitshift == 29 && potflag == 0
&& biomorph == -1 && inside != -60
&& inside != -61 && outside == -1 && useinitorbit != 1)
calctype = calcmand; /* the normal case - use CALCMAND */
else
{
/* special case: use the main processing loop */
calctype = StandardFractal;
longparm = &linit;
}
return(1);
}

JuliaSetup() /* Julia Routine */
{
if (debugflag != 90 && ! invert && decomp[0] == 0 && rqlim <= 4.0
&& bitshift == 29 && potflag == 0
&& biomorph == -1 && inside != -60
&& inside != -61 && outside == -1 && !finattract)
calctype = calcmand; /* the normal case - use CALCMAND */
else
{
/* special case: use the main processing loop */
calctype = StandardFractal;
longparm = &lparm;
get_julia_attractor (0.0, 0.0); /* another attractor? */
}
return(1);
}

NewtonSetup() /* Newton/NewtBasin Routines */
{
int i;
extern int basin;
extern int fpu;
if(fpu != 0 && debugflag != 1010)
{
if(fractype == MPNEWTON)
fractype = NEWTON;
else if(fractype == MPNEWTBASIN)
fractype = NEWTBASIN;
}

if(fpu == 0 && debugflag != 1010)
{
if(fractype == NEWTON)
fractype = MPNEWTON;
else if(fractype == NEWTBASIN)
fractype = MPNEWTBASIN;
}

/* set up table of roots of 1 along unit circle */
degree = (int)parm.x;
if(degree < 2)
degree = 3; /* defaults to 3, but 2 is possible */
root = 1;

/* precalculated values */
roverd = (double)root / (double)degree;
d1overd = (double)(degree - 1) / (double)degree;
maxcolor = 0;
threshold = .3*PI/degree; /* less than half distance between roots */
if (fractype == MPNEWTON || fractype == MPNEWTBASIN) {
mproverd = pd2MP(roverd);
mpd1overd = pd2MP(d1overd);
mpthreshold = pd2MP(threshold);
mpone = pd2MP(1.0);
}

floatmin = FLT_MIN;
floatmax = FLT_MAX;

basin = 0;
if(roots != staticroots) {
free(roots);
roots = staticroots;
}

if (fractype==NEWTBASIN)
{
if(parm.y)
basin = 2; /*stripes */
else
basin = 1;
if(degree > 16)

{
if((roots=(CMPLX *)malloc(degree*sizeof(CMPLX)))==NULL)
{
roots = staticroots;
degree = 16;
}
}
else
roots = staticroots;

/* list of roots to discover where we converged for newtbasin */
for(i=0;i {
roots[i].x = cos(i*PI*2.0/(double)degree);
roots[i].y = sin(i*PI*2.0/(double)degree);
}
}
else if (fractype==MPNEWTBASIN)
{
if(parm.y)
basin = 2; /*stripes */
else
basin = 1;

if(degree > 16)
{
if((MPCroots=(struct MPC *)malloc(degree*sizeof(struct MPC)))==NULL)
{
MPCroots = (struct MPC *)staticroots;
degree = 16;
}
}
else
MPCroots = (struct MPC *)staticroots;

/* list of roots to discover where we converged for newtbasin */
for(i=0;i {
MPCroots[i].x = pd2MP(cos(i*PI*2.0/(double)degree));
MPCroots[i].y = pd2MP(sin(i*PI*2.0/(double)degree));
}
}

if (degree%4 == 0)
symmetry = XYAXIS;
else
symmetry = XAXIS;

calctype=StandardFractal;
if (fractype == MPNEWTON || fractype == MPNEWTBASIN)
setMPfunctions();
return(1);
}


StandaloneSetup()
{
timer(0,fractalspecific[fractype].calctype);
return(0); /* effectively disable solid-guessing */
}

UnitySetup()
{
periodicitycheck = 0;
FgOne = (1L << bitshift);
FgTwo = FgOne + FgOne;
return(1);
}

MandelfpSetup()
{
c_exp = param[2];
if(fractype==FPMANDELZPOWER && c_exp < 1)
c_exp = 1;
if(fractype==FPMANDELZPOWER && c_exp & 1) /* odd exponents */
symmetry = XYAXIS_NOPARM;

pwr.x = param[2] - 1.0;
pwr.y = param[3];

floatparm = &init;
switch (fractype)
{
case MAGNET1M:
case MAGNET2M:
attr[0].x = 1.0; /* 1.0 + 0.0i always attracts */
attr[0].y = 0.0; /* - both MAGNET1 and MAGNET2 */
attractors = 1;
break;
case SPIDERFP:
if(periodicitycheck==1) /* if not user set */
periodicitycheck=4;
break;
case MANDELEXP:
symmetry = XAXIS_NOPARM;
break;
default:
break;
}
return(1);
}

JuliafpSetup()
{
c_exp = param[2];
if(fractype==FPJULIAZPOWER && c_exp < 1)
c_exp = 1;
if(fractype==FPJULIAZPOWER && c_exp & 1) /* odd exponents */
symmetry = NOSYM;
floatparm = &parm;
if(fractype==COMPLEXMARKSJUL)
{
pwr.x = param[2] - 1.0;
pwr.y = param[3];
Coefficient = ComplexPower(*floatparm, pwr);
}
switch (fractype)
{
case MAGNET2J:
FloatPreCalcMagnet2();
case MAGNET1J:
attr[0].x = 1.0; /* 1.0 + 0.0i always attracts */
attr[0].y = 0.0; /* - both MAGNET1 and MAGNET2 */
attractors = 1;
get_julia_attractor (0.0, 0.0); /* another attractor? */
break;
case LAMBDAFP:
get_julia_attractor (0.0, 0.0); /* another attractor? */
get_julia_attractor (0.5, 0.0); /* another attractor? */
break;
case LAMBDAEXP:
if(parm.y == 0.0)
symmetry=XAXIS;
get_julia_attractor (0.0, 0.0); /* another attractor? */
break;
default:
get_julia_attractor (0.0, 0.0); /* another attractor? */
break;
}
return(1);
}

MandellongSetup()
{
FgHalf = fudge >> 1;
c_exp = param[2];
if(fractype==MARKSMANDEL && c_exp < 1)
c_exp = 1;
if(fractype==LMANDELZPOWER && c_exp < 1)
c_exp = 1;
if((fractype==MARKSMANDEL && !(c_exp & 1)) ||
(fractype==LMANDELZPOWER && c_exp & 1))
symmetry = XYAXIS_NOPARM; /* odd exponents */
if((fractype==MARKSMANDEL && (c_exp & 1)) || fractype==LMANDELEXP)
symmetry = XAXIS_NOPARM;
if(fractype==SPIDER && periodicitycheck==1)
periodicitycheck=4;
longparm = &linit;
return(1);
}

JulialongSetup()
{
c_exp = param[2];
if(fractype==LJULIAZPOWER && c_exp < 1)
c_exp = 1;
if(fractype==LJULIAZPOWER && c_exp & 1) /* odd exponents */
symmetry = NOSYM;
longparm = &lparm;
switch (fractype)
{
case LAMBDA:
get_julia_attractor (0.0, 0.0); /* another attractor? */
get_julia_attractor (0.5, 0.0); /* another attractor? */
break;
case LLAMBDAEXP:
if(lparm.y == 0)
symmetry = XAXIS;
break;
default:
get_julia_attractor (0.0, 0.0); /* another attractor? */
break;
}
return(1);
}

TrigPlusSqrlongSetup()
{
fractalspecific[fractype].per_pixel = julia_per_pixel;
fractalspecific[fractype].orbitcalc = TrigPlusSqrFractal;
if(lparm.x == fudge && lparm.y == 0L && lparm2.y == 0L && debugflag != 90)
{
if(lparm2.x == fudge) /* Scott variant */
fractalspecific[fractype].orbitcalc = ScottTrigPlusSqrFractal;
else if(lparm2.x == -fudge) /* Skinner variant */
fractalspecific[fractype].orbitcalc = SkinnerTrigSubSqrFractal;
}
return(JulialongSetup());
}

TrigPlusSqrfpSetup()
{
fractalspecific[fractype].per_pixel = juliafp_per_pixel;
fractalspecific[fractype].orbitcalc = TrigPlusSqrfpFractal;
if(parm.x == 1.0 && parm.y == 0.0 && parm2.y == 0.0 && debugflag != 90)
{
if(parm2.x == 1.0) /* Scott variant */
fractalspecific[fractype].orbitcalc = ScottTrigPlusSqrfpFractal;
else if(parm2.x == -1.0) /* Skinner variant */
fractalspecific[fractype].orbitcalc = SkinnerTrigSubSqrfpFractal;
}
return(JuliafpSetup());
}

TrigPlusTriglongSetup()
{
FnPlusFnSym();
if(trigndx[1] == SQR)
return(TrigPlusSqrlongSetup());
fractalspecific[fractype].per_pixel = long_julia_per_pixel;
fractalspecific[fractype].orbitcalc = TrigPlusTrigFractal;
if(lparm.x == fudge && lparm.y == 0L && lparm2.y == 0L && debugflag != 90)
{
if(lparm2.x == fudge) /* Scott variant */
fractalspecific[fractype].orbitcalc = ScottTrigPlusTrigFractal;
else if(lparm2.x == -fudge) /* Skinner variant */
fractalspecific[fractype].orbitcalc = SkinnerTrigSubTrigFractal;
}
return(JulialongSetup());
}

TrigPlusTrigfpSetup()
{
FnPlusFnSym();
if(trigndx[1] == SQR)
return(TrigPlusSqrfpSetup());
fractalspecific[fractype].per_pixel = otherjuliafp_per_pixel;
fractalspecific[fractype].orbitcalc = TrigPlusTrigfpFractal;
if(parm.x == 1.0 && parm.y == 0.0 && parm2.y == 0.0 && debugflag != 90)
{
if(parm2.x == 1.0) /* Scott variant */
fractalspecific[fractype].orbitcalc = ScottTrigPlusTrigfpFractal;
else if(parm2.x == -1.0) /* Skinner variant */
fractalspecific[fractype].orbitcalc = SkinnerTrigSubTrigfpFractal;
}
return(JuliafpSetup());
}

FnPlusFnSym() /* set symmetry matrix for fn+fn type */
{
static char far fnplusfn[7][7] =
{/* fn2 ->sin cos sinh cosh sqr exp log */
/* fn1 */
/* sin */ {PI_SYM,XAXIS, XYAXIS, XAXIS, XAXIS, XAXIS, XAXIS},
/* cos */ {XAXIS, PI_SYM,XAXIS, XYAXIS,XAXIS, XAXIS, XAXIS},
/* sinh*/ {XYAXIS,XAXIS, XYAXIS, XAXIS, XAXIS, XAXIS, XAXIS},
/* cosh*/ {XAXIS, XYAXIS,XAXIS, XYAXIS,XAXIS, XAXIS, XAXIS},
/* sqr */ {XAXIS, XYAXIS,XAXIS, XAXIS, XYAXIS,XAXIS, XAXIS},
/* exp */ {XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XAXIS},
/* log */ {XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XYAXIS}
};
if(parm.y == 0.0 && parm2.y == 0.0)
symmetry = fnplusfn[trigndx[0]][trigndx[1]];
else
symmetry = NOSYM;
return(0);
}

ZXTrigPlusZSetup()
{
static char far ZXTrigPlusZSym1[] =
/* fn1 -> sin cos sinh cosh sqr exp log */
{XAXIS,XYAXIS,XAXIS,XYAXIS,XYAXIS,XAXIS,XAXIS};
static char far ZXTrigPlusZSym2[] =
/* fn1 -> sin cos sinh cosh sqr exp log */
{NOSYM,ORIGIN,NOSYM,ORIGIN,XYAXIS,NOSYM,NOSYM};
if(param[1] == 0.0 && param[3] == 0.0)
symmetry = ZXTrigPlusZSym1[trigndx[0]];
else
symmetry = ZXTrigPlusZSym2[trigndx[0]];

if(fractalspecific[fractype].isinteger)
{
fractalspecific[fractype].orbitcalc = ZXTrigPlusZFractal;
if(lparm.x == fudge && lparm.y == 0L && lparm2.y == 0L && debugflag != 90)
{
if(lparm2.x == fudge) /* Scott variant */
fractalspecific[fractype].orbitcalc = ScottZXTrigPlusZFractal;
else if(lparm2.x == -fudge) /* Skinner variant */
fractalspecific[fractype].orbitcalc = SkinnerZXTrigSubZFractal;
}
return(JulialongSetup());
}
else
{
fractalspecific[fractype].orbitcalc = ZXTrigPlusZfpFractal;
if(parm.x == 1.0 && parm.y == 0.0 && parm2.y == 0.0 && debugflag != 90)
{
if(parm2.x == 1.0) /* Scott variant */
fractalspecific[fractype].orbitcalc = ScottZXTrigPlusZfpFractal;
else if(parm2.x == -1.0) /* Skinner variant */
fractalspecific[fractype].orbitcalc = SkinnerZXTrigSubZfpFractal;
}
}
return(JuliafpSetup());
}

LambdaTrigSetup()
{
int isinteger;
if(isinteger = fractalspecific[fractype].isinteger)
fractalspecific[fractype].orbitcalc = LambdaTrigFractal;
else
fractalspecific[fractype].orbitcalc = LambdaTrigfpFractal;
switch(trigndx[0])
{
case SIN:
case COS:
symmetry = PI_SYM;
if(isinteger)
fractalspecific[fractype].orbitcalc = LambdaTrigFractal1;
else
fractalspecific[fractype].orbitcalc = LambdaTrigfpFractal1;
break;
case SINH:
case COSH:
symmetry = ORIGIN;
if(isinteger)
fractalspecific[fractype].orbitcalc = LambdaTrigFractal2;
else
fractalspecific[fractype].orbitcalc = LambdaTrigfpFractal2;
break;
case SQR:
symmetry = ORIGIN;
break;
case EXP:
if(isinteger)
fractalspecific[fractype].orbitcalc = LongLambdaexponentFractal;
else
fractalspecific[fractype].orbitcalc = LambdaexponentFractal;
symmetry = XAXIS;
break;
case LOG:
symmetry = NOSYM;
break;
}
if(isinteger)
return(JulialongSetup());
else
return(JuliafpSetup());
}

JuliafnPlusZsqrdSetup()
{
static char far fnpluszsqrd[] =
/* fn1 -> sin cos sinh cosh sqr exp log */
/* sin */ {NOSYM,ORIGIN,NOSYM,ORIGIN,ORIGIN,NOSYM,NOSYM};

symmetry = fnpluszsqrd[trigndx[0]];
if(fractalspecific[fractype].isinteger)
return(JulialongSetup());
else
return(JuliafpSetup());
}

SqrTrigSetup()
{
static char far SqrTrigSym[] =
/* fn1 -> sin cos sinh cosh sqr exp log */
{PI_SYM,PI_SYM,XYAXIS,XYAXIS,XYAXIS,XAXIS,XAXIS};
symmetry = SqrTrigSym[trigndx[0]];
if(fractalspecific[fractype].isinteger)
return(JulialongSetup());
else
return(JuliafpSetup());
}

FnXFnSetup()
{
static char far fnxfn[7][7] =
{/* fn2 ->sin cos sinh cosh sqr exp log */
/* fn1 */
/* sin */ {PI_SYM,YAXIS, XYAXIS,XYAXIS,XYAXIS,XAXIS, XAXIS},
/* cos */ {YAXIS, PI_SYM,XYAXIS,XYAXIS,XYAXIS,XAXIS, XAXIS},
/* sinh*/ {XYAXIS,XYAXIS,XYAXIS,XYAXIS,XYAXIS,XAXIS, XAXIS},
/* cosh*/ {XYAXIS,XYAXIS,XYAXIS,XYAXIS,XYAXIS,XAXIS, XAXIS},
/* sqr */ {XYAXIS,XYAXIS,XYAXIS,XYAXIS,XYAXIS,XAXIS, XAXIS},
/* exp */ {XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XAXIS},
/* log */ {XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XAXIS},
};
/*
if(trigndx[0]==EXP || trigndx[0]==LOG || trigndx[1]==EXP || trigndx[1]==LOG)
symmetry = XAXIS;
else if((trigndx[0]==SIN && trigndx[1]==SIN)||(trigndx[0]==COS && trigndx[1]==COS))
symmetry = PI_SYM;
else if((trigndx[0]==SIN && trigndx[1]==COS)||(trigndx[0]==COS && trigndx[1]==SIN))
symmetry = YAXIS;
else
symmetry = XYAXIS;
*/
symmetry = fnxfn[trigndx[0]][trigndx[1]];
if(fractalspecific[fractype].isinteger)
return(JulialongSetup());
else
return(JuliafpSetup());
}

MandelTrigSetup()
{
int isinteger;
if(isinteger = fractalspecific[fractype].isinteger)
fractalspecific[fractype].orbitcalc = LambdaTrigFractal;
else
fractalspecific[fractype].orbitcalc = LambdaTrigfpFractal;
symmetry = XYAXIS_NOPARM;
switch(trigndx[0])
{
case SIN:
case COS:
if(isinteger)
fractalspecific[fractype].orbitcalc = LambdaTrigFractal1;
else
fractalspecific[fractype].orbitcalc = LambdaTrigfpFractal1;
break;
case SINH:
case COSH:
if(isinteger)
fractalspecific[fractype].orbitcalc = LambdaTrigFractal2;
else
fractalspecific[fractype].orbitcalc = LambdaTrigfpFractal2;
break;
case EXP:
symmetry = XAXIS_NOPARM;
if(isinteger)
fractalspecific[fractype].orbitcalc = LongLambdaexponentFractal;
else
fractalspecific[fractype].orbitcalc = LambdaexponentFractal;
break;
case LOG:
symmetry = XAXIS_NOPARM;
break;
}
if(isinteger)
return(MandellongSetup());
else
return(MandelfpSetup());
}

MarksJuliaSetup()
{
c_exp = param[2];
longparm = &lparm;
lold = *longparm;
if(c_exp > 2)
lcpower(&lold,c_exp,&lcoefficient,bitshift);
else if(c_exp == 2)
{
lcoefficient.x = multiply(lold.x,lold.x,bitshift) - multiply(lold.y,lold.y,bitshift);
lcoefficient.y = multiply(lold.x,lold.y,bitshiftless1);
}
else if(c_exp < 2)
lcoefficient = lold;
return(1);
}

SierpinskiSetup()
{
/* sierpinski */
periodicitycheck = 0; /* disable periodicity checks */
ltmp.x = 1;
ltmp.x = ltmp.x << bitshift; /* ltmp.x = 1 */
ltmp.y = ltmp.x >> 1; /* ltmp.y = .5 */
return(1);
}

SierpinskiFPSetup()
{
/* sierpinski */
periodicitycheck = 0; /* disable periodicity checks */
tmp.x = 1;
tmp.y = 0.5;
return(1);
}


StandardSetup()
{
if(fractype==UNITYFP)
periodicitycheck=0;
return(1);
}



/* parameter descriptions */
/* for Mandelbrots */
static char realz0[] = "Real Perturbation of Z(0)";
static char imagz0[] = "Imaginary Perturbation of Z(0)";

/* for Julias */
static char realparm[] = "Real Part of Parameter";
static char imagparm[] = "Imaginary Part of Parameter";

/* for Newtons */
static char newtdegree[] = "Polynomial Degree (> 2)";

/* for MarksMandel/Julia */
static char exponent[] = "Parameter Exponent ( > 0)";

/* for Complex Newton */
static char realroot[] = "Real part of Root";
static char imagroot[] = "Imag part of Root";
static char realdegree[] = "Real part of Degree";
static char imagdegree[] = "Imag part of Degree";

/* for Lorenz */
static char timestep[] = "Time Step";

/* for formula */
static char p1real[] = "Real portion of p1";
static char p2real[] = "Real portion of p2";
static char p1imag[] = "Imaginary portion of p1";
static char p2imag[] = "Imaginary portion of p2";

/* trig functions */
static char recoeftrg1[] = "Real Coefficient First Function";
static char imcoeftrg1[] = "Imag Coefficient First Function";
static char recoeftrg2[] = "Real Coefficient Second Function";
static char imcoeftrg2[] = "Imag Coefficient Second Function";
static char recoefsqr[] = "Real Coefficient Square Term";
static char imcoefsqr[] = "Imag Coefficient Square Term";
static char recoef2nd[] = "Real Coefficient Second Term";
static char imcoef2nd[] = "Imag Coefficient Second Term";

/* KAM Torus */
static char kamangle[] = "Angle (radians)";
static char kamstep[] = "Step size";
static char kamstop[] = "Stop value";
static char pointsperorbit[] = "Points per orbit";

/* Newtbasin */
static char stripes[] = "Enter non-zero value for stripes";

/* bailout defines */
#define FTRIGBAILOUT 2500.0
#define LTRIGBAILOUT 64.0
#define STDBAILOUT 4.0
#define NOBAILOUT 0.0

struct fractalspecificstuff far fractalspecific[] =
{
/*
fractal name, parameter text strings, parameter values, flags,
xmin xmax ymin ymax int tojulia tomandel tofloat symmetry
|------|-----|-----|-----|--|--------|---------|--------|---------|
orbit fnct per_pixel fnct per_image fnct calctype fcnt bailout
|---------------|---------------|---------------|----------------|-------|
*/

"mandel", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.5, 1.5, -1.5, 1.5, 1, JULIA, NOFRACTAL, MANDELFP, XAXIS_NOPARM,
JuliaFractal, mandel_per_pixel,MandelSetup, calcmand, STDBAILOUT,

"julia", realparm, imagparm,"","",0.3,0.6,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, MANDEL, JULIAFP, ORIGIN,
JuliaFractal, julia_per_pixel, JuliaSetup, calcmand, STDBAILOUT,

"*newtbasin", newtdegree,"", "","",3,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, MPNEWTBASIN, NOSYM,
NewtonFractal2, otherjuliafp_per_pixel, NewtonSetup, StandardFractal,NOBAILOUT,

"lambda", realparm, imagparm,"","",0.85,0.6,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, MANDELLAMBDA, LAMBDAFP, NOSYM,
LambdaFractal, julia_per_pixel, JulialongSetup, StandardFractal,STDBAILOUT,

"*mandel", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.5, 1.5, -1.5, 1.5, 0, JULIAFP, NOFRACTAL, MANDEL, XAXIS_NOPARM,
JuliafpFractal,mandelfp_per_pixel, MandelfpSetup,StandardFractal,STDBAILOUT,

"*newton", newtdegree,stripes, "","",3,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, MPNEWTON, XAXIS,
NewtonFractal2, otherjuliafp_per_pixel, NewtonSetup, StandardFractal,NOBAILOUT,

"*julia", realparm, imagparm,"","",0.3,0.6,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, MANDELFP, JULIA, ORIGIN,
JuliafpFractal, juliafp_per_pixel, JuliafpSetup,StandardFractal,STDBAILOUT,

"plasma", "Graininess Factor (.1 to 50, default is 2)","","","",2,0,0,0,
NOZOOM+NOGUESS+NOTRACE+NORESUME+WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
NULL, NULL, StandaloneSetup, plasma, NOBAILOUT,

"*mandelfn", realz0, imagz0,"","",0,0,0,0,TRIG1+WINFRAC,
-8.0, 8.0, -6.0, 6.0, 0, LAMBDATRIGFP,NOFRACTAL, MANDELTRIG, XYAXIS_NOPARM,
LambdaTrigfpFractal,othermandelfp_per_pixel,MandelTrigSetup,StandardFractal,FTRIGBAILOUT,

"*manowar", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.5, 1.5, -1.5, 1.5, 0, MANOWARJFP, NOFRACTAL, MANOWAR, XAXIS_NOPARM,
ManOWarfpFractal,mandelfp_per_pixel, MandelfpSetup,StandardFractal,STDBAILOUT,

"manowar", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.5, 1.5, -1.5, 1.5, 1, MANOWARJ, NOFRACTAL, MANOWARFP, XAXIS_NOPARM,
ManOWarFractal,mandel_per_pixel, MandellongSetup,StandardFractal,STDBAILOUT,

"test", "(testpt Param #1)","(testpt param #2)","(testpt param #3)", "(testpt param #4)",0,0,0,0, 0,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
NULL, NULL, StandaloneSetup, test, STDBAILOUT,

"sierpinski", "","","","",0,0,0,0, WINFRAC,
-0.9, 1.7, -0.9, 1.7, 1, NOFRACTAL, NOFRACTAL, SIERPINSKIFP, NOSYM,
SierpinskiFractal,long_julia_per_pixel, SierpinskiSetup,StandardFractal,127.0,

"barnsleym1", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, BARNSLEYJ1,NOFRACTAL, BARNSLEYM1FP, XYAXIS_NOPARM,
Barnsley1Fractal,long_mandel_per_pixel,MandellongSetup,StandardFractal,STDBAILOUT,

"barnsleyj1", realparm, imagparm,"","",0.6,1.1,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, BARNSLEYM1, BARNSLEYJ1FP, ORIGIN,
Barnsley1Fractal,long_julia_per_pixel,JulialongSetup,StandardFractal,STDBAILOUT,

"barnsleym2", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, BARNSLEYJ2,NOFRACTAL, BARNSLEYM2FP, YAXIS_NOPARM,
Barnsley2Fractal,long_mandel_per_pixel,MandellongSetup,StandardFractal,STDBAILOUT,

"barnsleyj2", realparm, imagparm,"","",0.6,1.1,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, BARNSLEYM2, BARNSLEYJ2FP, ORIGIN,
Barnsley2Fractal,long_julia_per_pixel,JulialongSetup,StandardFractal,STDBAILOUT,

"sqr(fn)", "","","","",0,0,0,0,TRIG1+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 16, NOFRACTAL, NOFRACTAL, SQRTRIGFP,XYAXIS,
SqrTrigFractal, long_julia_per_pixel, SqrTrigSetup, StandardFractal,LTRIGBAILOUT,

"*sqr(fn)", "","","","",0,0,0,0,TRIG1+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 0, NOFRACTAL, NOFRACTAL, SQRTRIG,XYAXIS,
SqrTrigfpFractal, otherjuliafp_per_pixel, SqrTrigSetup, StandardFractal,LTRIGBAILOUT,


"fn+fn", recoeftrg1, imcoeftrg1,recoeftrg2, imcoeftrg2,1,0,1,0,TRIG2+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 16, NOFRACTAL, NOFRACTAL, TRIGPLUSTRIGFP,XAXIS,
TrigPlusTrigFractal, long_julia_per_pixel, TrigPlusTriglongSetup, StandardFractal,LTRIGBAILOUT,

"mandellambda",realz0, imagz0,"","",0,0,0,0, WINFRAC,
-3.0, 5.0, -3.0, 3.0, 1, LAMBDA, NOFRACTAL, MANDELLAMBDAFP, XAXIS_NOPARM,
LambdaFractal,mandel_per_pixel,MandellongSetup,StandardFractal,STDBAILOUT,

"marksmandel", realz0, imagz0, exponent,"",0,0,1,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, MARKSJULIA, NOFRACTAL, NOFRACTAL, NOSYM,
MarksLambdaFractal,marksmandel_per_pixel,MandellongSetup,StandardFractal,STDBAILOUT,

"marksjulia", realparm, imagparm, exponent,"",0.1,0.9,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, MARKSMANDEL, NOFRACTAL, ORIGIN,
MarksLambdaFractal,julia_per_pixel,MarksJuliaSetup,StandardFractal,STDBAILOUT,

"unity", "","","","",0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, NOFRACTAL, UNITYFP, XYAXIS,
UnityFractal, long_julia_per_pixel,UnitySetup,StandardFractal,NOBAILOUT,

"mandel4", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, JULIA4, NOFRACTAL, NOFRACTAL, XAXIS_NOPARM,
Mandel4Fractal, mandel_per_pixel, MandellongSetup, StandardFractal, STDBAILOUT,

"julia4", realparm, imagparm,"","",0.6,0.55,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, MANDEL4, NOFRACTAL, ORIGIN,
Mandel4Fractal, julia_per_pixel, JulialongSetup,StandardFractal, STDBAILOUT,

"ifs", "","","","",0,0,0,0, NOGUESS+NOTRACE+NORESUME+WINFRAC,
-8.0, 8.0, -1.0, 11.0, 16, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
NULL, NULL, StandaloneSetup, ifs, NOBAILOUT,

"ifs3d", "","","","",0,0,0,0, NOGUESS+NOTRACE+NORESUME+WINFRAC,
-11.0, 11.0, -11.0, 11.0, 16, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
NULL, NULL, StandaloneSetup, ifs3d, NOBAILOUT,

"barnsleym3", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, BARNSLEYJ3,NOFRACTAL, BARNSLEYM3FP, XAXIS_NOPARM,
Barnsley3Fractal,long_mandel_per_pixel,MandellongSetup,StandardFractal,STDBAILOUT,

"barnsleyj3", realparm, imagparm,"","",0.1,0.36,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, BARNSLEYM3, BARNSLEYJ3FP, NOSYM,
Barnsley3Fractal,long_julia_per_pixel,JulialongSetup,StandardFractal,STDBAILOUT,

"fn(z*z)", "","","","",0,0,0,0,TRIG1+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 16, NOFRACTAL, NOFRACTAL, TRIGSQRFP,XYAXIS,
TrigZsqrdFractal, julia_per_pixel, JulialongSetup, StandardFractal,STDBAILOUT,

"*fn(z*z)", "","","","",0,0,0,0,TRIG1+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 0, NOFRACTAL, NOFRACTAL, TRIGSQR,XYAXIS,
TrigZsqrdfpFractal, juliafp_per_pixel, JuliafpSetup, StandardFractal,STDBAILOUT,

"*bifurcation", "", "","","",0,0,0,0, NOGUESS+NOTRACE+NOROTATE+WINFRAC,
1.9, 3.0, 0, 1.34, 0, NOFRACTAL, NOFRACTAL, LBIFURCATION, NOSYM,
BifurcVerhulst, NULL, StandaloneSetup, Bifurcation, NOBAILOUT,

"*fn+fn", recoeftrg1, imcoeftrg1,recoeftrg2, imcoeftrg2,1,0,1,0,TRIG2+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 0, NOFRACTAL, NOFRACTAL, TRIGPLUSTRIG,XAXIS,
TrigPlusTrigfpFractal, otherjuliafp_per_pixel, TrigPlusTrigfpSetup, StandardFractal,LTRIGBAILOUT,

"fn*fn", "","","","",0,0,0,0,TRIG2+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 16, NOFRACTAL, NOFRACTAL, TRIGXTRIGFP,PI,
TrigXTrigFractal, long_julia_per_pixel, FnXFnSetup, StandardFractal,LTRIGBAILOUT,

"*fn*fn", "","","","",0,0,0,0,TRIG2+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 0, NOFRACTAL, NOFRACTAL, TRIGXTRIG,PI,
TrigXTrigfpFractal, otherjuliafp_per_pixel, FnXFnSetup, StandardFractal,LTRIGBAILOUT,

"sqr(1/fn)","","","","",0,0,0,0,TRIG1+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 16, NOFRACTAL, NOFRACTAL, SQR1OVERTRIGFP,NOSYM,
Sqr1overTrigFractal, long_julia_per_pixel, SqrTrigSetup, StandardFractal,LTRIGBAILOUT,

"*sqr(1/fn)","","","","",0,0,0,0,TRIG1+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 0, NOFRACTAL, NOFRACTAL, SQR1OVERTRIG,NOSYM,
Sqr1overTrigfpFractal, otherjuliafp_per_pixel, SqrTrigSetup, StandardFractal,LTRIGBAILOUT,

"fn*z+z",recoeftrg1, imcoeftrg1, recoef2nd,imcoef2nd,1,0,1,0,TRIG1+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 1, NOFRACTAL, NOFRACTAL, ZXTRIGPLUSZFP,XAXIS,
ZXTrigPlusZFractal,julia_per_pixel,ZXTrigPlusZSetup, StandardFractal,LTRIGBAILOUT,

"*fn*z+z",recoeftrg1, imcoeftrg2, recoef2nd,imcoef2nd,1,0,1,0,TRIG1+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 0, NOFRACTAL, NOFRACTAL, ZXTRIGPLUSZ,XAXIS,
ZXTrigPlusZfpFractal, juliafp_per_pixel, ZXTrigPlusZSetup, StandardFractal,LTRIGBAILOUT,

"*kamtorus",kamangle,kamstep,kamstop,pointsperorbit,1.3,.05,1.5,150, NOGUESS+NOTRACE+INFCALC+WINFRAC,
-1.0, 1.0, -.75, .75, 0, NOFRACTAL, NOFRACTAL, KAM, NOSYM,
kamtorusfloatorbit, NULL, orbit3dfloatsetup, orbit2dfloat, NOBAILOUT,

"kamtorus",kamangle,kamstep,kamstop,pointsperorbit,1.3,.05,1.5,150, NOGUESS+NOTRACE+INFCALC+WINFRAC,
-1.0, 1.0, -.75, .75,16, NOFRACTAL, NOFRACTAL, KAMFP, NOSYM,
kamtoruslongorbit, NULL, orbit3dlongsetup, orbit2dlong, NOBAILOUT,

"*kamtorus3d",kamangle,kamstep,kamstop,pointsperorbit,1.3,.05,1.5,150, NOGUESS+NOTRACE+INFCALC+WINFRAC,
-3.0, 3.0, -1, 3.5, 0, NOFRACTAL, NOFRACTAL, KAM3D, NOSYM,
kamtorusfloatorbit, NULL, orbit3dfloatsetup, orbit3dfloat, NOBAILOUT,

"kamtorus3d",kamangle,kamstep,kamstop,pointsperorbit,1.3,.05,1.5,150, NOGUESS+NOTRACE+INFCALC+WINFRAC,
-3.0, 3.0, -1, 3.5,16, NOFRACTAL, NOFRACTAL, KAM3DFP, NOSYM,
kamtoruslongorbit, NULL, orbit3dlongsetup, orbit3dlong, NOBAILOUT,

"lambdafn", realparm, imagparm,"","",1.0,0.4,0,0,TRIG1+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 16, NOFRACTAL, MANDELTRIG, LAMBDATRIGFP,PI_SYM,
LambdaTrigFractal,long_julia_per_pixel, LambdaTrigSetup, StandardFractal,LTRIGBAILOUT,

"manfn+zsqrd", realz0, imagz0,"","",0,0,0,0, TRIG1+WINFRAC,
-2.5, 1.5, -1.5, 1.5, 16, LJULTRIGPLUSZSQRD, NOFRACTAL, FPMANTRIGPLUSZSQRD, XAXIS_NOPARM,
TrigPlusZsquaredFractal,mandel_per_pixel,MandellongSetup,StandardFractal, STDBAILOUT,

"julfn+zsqrd", realparm, imagparm,"","",-0.5,0.5,0,0, TRIG1+WINFRAC,
-2.0, 2.0, -1.5, 1.5, 16, NOFRACTAL, LMANTRIGPLUSZSQRD, FPJULTRIGPLUSZSQRD, NOSYM,
TrigPlusZsquaredFractal,julia_per_pixel, JuliafnPlusZsqrdSetup,StandardFractal, STDBAILOUT,

"*manfn+zsqrd", realz0, imagz0,"","",0,0,0,0, TRIG1+WINFRAC,
-2.5, 1.5, -1.5, 1.5, 0, FPJULTRIGPLUSZSQRD, NOFRACTAL, LMANTRIGPLUSZSQRD, XAXIS_NOPARM,
TrigPlusZsquaredfpFractal,mandelfp_per_pixel, MandelfpSetup,StandardFractal, STDBAILOUT,

"*julfn+zsqrd", realparm, imagparm,"","",-0.5,0.5,0,0, TRIG1+WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, FPMANTRIGPLUSZSQRD, LJULTRIGPLUSZSQRD, NOSYM,
TrigPlusZsquaredfpFractal, juliafp_per_pixel, JuliafnPlusZsqrdSetup,StandardFractal, STDBAILOUT,

"*lambdafn", realparm, imagparm,"","",1.0,0.4,0,0,TRIG1+WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, MANDELTRIGFP, LAMBDATRIG, PI_SYM,
LambdaTrigfpFractal,otherjuliafp_per_pixel,LambdaTrigSetup,StandardFractal,FTRIGBAILOUT,

"mandelfn",realz0, imagz0,"","",0,0,0,0,TRIG1+WINFRAC,
-8.0, 8.0, -6.0, 6.0, 16, LAMBDATRIG, NOFRACTAL, MANDELTRIGFP, XYAXIS_NOPARM,
LambdaTrigFractal,long_mandel_per_pixel,MandelTrigSetup,StandardFractal,LTRIGBAILOUT,

"manzpower", realz0, imagz0, exponent,"",0,0,2,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, LJULIAZPOWER, NOFRACTAL, FPMANDELZPOWER, XAXIS,
longZpowerFractal,long_mandel_per_pixel,MandellongSetup,StandardFractal,STDBAILOUT,

"julzpower", realparm, imagparm, exponent,"",0.3,0.6,2,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, LMANDELZPOWER, FPJULIAZPOWER, ORIGIN,
longZpowerFractal,long_julia_per_pixel,JulialongSetup,StandardFractal,STDBAILOUT,

"*manzpower", realz0, imagz0, exponent,"",0,0,2,0, WINFRAC,
-2.5, 1.5, -1.5, 1.5, 0, FPJULIAZPOWER, NOFRACTAL, LMANDELZPOWER, XAXIS_NOPARM,
floatZpowerFractal,othermandelfp_per_pixel, MandelfpSetup,StandardFractal,STDBAILOUT,

"*julzpower", realparm, imagparm, exponent,"",0.3,0.6,2,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, FPMANDELZPOWER, LJULIAZPOWER, ORIGIN,
floatZpowerFractal, otherjuliafp_per_pixel, JuliafpSetup,StandardFractal,STDBAILOUT,

"manzzpwr", realz0, imagz0, exponent,"",0,0,2,0, WINFRAC,
-2.5, 1.5, -1.5, 1.5, 0, FPJULZTOZPLUSZPWR, NOFRACTAL, NOFRACTAL, XAXIS_NOPARM,
floatZtozPluszpwrFractal,othermandelfp_per_pixel, MandelfpSetup,StandardFractal,STDBAILOUT,

"julzzpwr", realparm, imagparm, exponent,"",-0.3,0.3,2,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, FPMANZTOZPLUSZPWR, NOFRACTAL, NOSYM,
floatZtozPluszpwrFractal, otherjuliafp_per_pixel, JuliafpSetup,StandardFractal,STDBAILOUT,

"manfn+exp",realz0, imagz0,"","",0,0,0,0, TRIG1+WINFRAC,
-8.0, 8.0, -6.0, 6.0, 16, LJULTRIGPLUSEXP, NOFRACTAL, FPMANTRIGPLUSEXP, XAXIS_NOPARM,
LongTrigPlusExponentFractal,long_mandel_per_pixel,MandellongSetup,StandardFractal,STDBAILOUT,

"julfn+exp", realparm, imagparm,"","",0,0,0,0, TRIG1+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 16, NOFRACTAL, LMANTRIGPLUSEXP,FPJULTRIGPLUSEXP, NOSYM,
LongTrigPlusExponentFractal, long_julia_per_pixel, JulialongSetup, StandardFractal,STDBAILOUT,

"*manfn+exp", realz0, imagz0,"","",0,0,0,0, TRIG1+WINFRAC,
-8.0, 8.0, -6.0, 6.0, 0, FPJULTRIGPLUSEXP, NOFRACTAL, LMANTRIGPLUSEXP, XAXIS_NOPARM,
FloatTrigPlusExponentFractal,othermandelfp_per_pixel,MandelfpSetup,StandardFractal,STDBAILOUT,

"*julfn+exp", realparm, imagparm,"","",0,0,0,0, TRIG1+WINFRAC,
-4.0, 4.0, -3.0, 3.0, 0, NOFRACTAL, FPMANTRIGPLUSEXP, LJULTRIGPLUSEXP, NOSYM,
FloatTrigPlusExponentFractal,otherjuliafp_per_pixel,JuliafpSetup,StandardFractal,STDBAILOUT,

"*popcorn", "", "", "","",0,0,0,0, NOGUESS+NOTRACE+WINFRAC,
-3.0, 3.0, -2.2, 2.2, 0, NOFRACTAL, NOFRACTAL, LPOPCORN, NOPLOT,
PopcornFractal, otherjuliafp_per_pixel, JuliafpSetup, popcorn,STDBAILOUT,

"popcorn", "", "", "","",0,0,0,0, NOGUESS+NOTRACE+WINFRAC,
-3.0, 3.0, -2.2, 2.2, 16, NOFRACTAL, NOFRACTAL, FPPOPCORN, NOPLOT,
LPopcornFractal, long_julia_per_pixel, JulialongSetup,popcorn,STDBAILOUT,

"*lorenz",timestep,"a","b", "c",.02,5,15,1, NOGUESS+NOTRACE+INFCALC+WINFRAC,
-15, 15, 0, 30, 0, NOFRACTAL, NOFRACTAL, LLORENZ, NOSYM,
lorenz3dfloatorbit, NULL, orbit3dfloatsetup, orbit2dfloat, NOBAILOUT,

"lorenz",timestep,"a","b", "c",.02,5,15,1, NOGUESS+NOTRACE+INFCALC+WINFRAC,
-15, 15, 0, 30, 16, NOFRACTAL, NOFRACTAL, FPLORENZ, NOSYM,
lorenz3dlongorbit, NULL, orbit3dlongsetup, orbit2dlong, NOBAILOUT,

"lorenz3d",timestep,"a","b", "c",.02,5,15,1, NOGUESS+NOTRACE+NORESUME+WINFRAC,
-30.0, 30.0, -30.0, 30.0, 16, NOFRACTAL, NOFRACTAL, FPLORENZ3D, NOSYM,
lorenz3dlongorbit, NULL, orbit3dlongsetup, orbit3dlong, NOBAILOUT,

"newton", newtdegree,"", "","",3,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, NEWTON, XAXIS,
MPCNewtonFractal, MPCjulia_per_pixel, NewtonSetup, StandardFractal,NOBAILOUT,

"newtbasin", newtdegree,stripes, "","",0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, NEWTBASIN, NOSYM,
MPCNewtonFractal, MPCjulia_per_pixel, NewtonSetup, StandardFractal,NOBAILOUT,

"complexnewton", realdegree, imagdegree, realroot, imagroot,3,0,1,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
ComplexNewton, otherjuliafp_per_pixel, ComplexNewtonSetup, StandardFractal,NOBAILOUT,

"complexbasin", realdegree, imagdegree, realroot, imagroot,3,0,1,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
ComplexBasin, otherjuliafp_per_pixel, ComplexNewtonSetup, StandardFractal, NOBAILOUT,

"cmplxmarksmand", realz0, imagz0, realdegree, imagdegree,0,0,1,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, COMPLEXMARKSJUL, NOFRACTAL, NOFRACTAL, NOSYM,
MarksCplxMand, MarksCplxMandperp, MandelfpSetup, StandardFractal, STDBAILOUT,

"cmplxmarksjul", realparm, imagparm, realdegree, imagdegree,0.3,0.6,1,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, COMPLEXMARKSMAND, NOFRACTAL, NOSYM,
MarksCplxMand, juliafp_per_pixel, JuliafpSetup, StandardFractal, STDBAILOUT,

"formula", p1real, p1imag, p2real, p2imag, 0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, NOFRACTAL, FFORMULA, SETUP_SYM,
Formula, form_per_pixel, intFormulaSetup, StandardFractal, 0,

"*formula", p1real, p1imag, p2real, p2imag, 0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, FORMULA, SETUP_SYM,
Formula, form_per_pixel, fpFormulaSetup, StandardFractal, 0,

"*sierpinski", "","","","",0,0,0,0, WINFRAC,
-0.9, 1.7, -0.9, 1.7, 0, NOFRACTAL, NOFRACTAL, SIERPINSKI, NOSYM,
SierpinskiFPFractal, otherjuliafp_per_pixel, SierpinskiFPSetup,StandardFractal,127.0,

"*lambda", realparm, imagparm,"","",0.85,0.6,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, MANDELLAMBDAFP, LAMBDA, NOSYM,
LambdaFPFractal, juliafp_per_pixel, JuliafpSetup, StandardFractal,STDBAILOUT,

"*barnsleym1", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, BARNSLEYJ1FP,NOFRACTAL, BARNSLEYM1, XYAXIS_NOPARM,
Barnsley1FPFractal, othermandelfp_per_pixel,MandelfpSetup,StandardFractal,STDBAILOUT,

"*barnsleyj1", realparm, imagparm,"","",0.6,1.1,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, BARNSLEYM1FP, BARNSLEYJ1, ORIGIN,
Barnsley1FPFractal, otherjuliafp_per_pixel,JuliafpSetup,StandardFractal,STDBAILOUT,

"*barnsleym2", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, BARNSLEYJ2FP,NOFRACTAL, BARNSLEYM2, YAXIS_NOPARM,
Barnsley2FPFractal,othermandelfp_per_pixel,MandelfpSetup,StandardFractal,STDBAILOUT,

"*barnsleyj2", realparm, imagparm,"","",0.6,1.1,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, BARNSLEYM2FP, BARNSLEYJ2, ORIGIN,
Barnsley2FPFractal,otherjuliafp_per_pixel,JuliafpSetup,StandardFractal,STDBAILOUT,

"*barnsleym3", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, BARNSLEYJ3FP, NOFRACTAL, BARNSLEYM3, XAXIS_NOPARM,
Barnsley3FPFractal,othermandelfp_per_pixel,MandelfpSetup,StandardFractal,STDBAILOUT,

"*barnsleyj3", realparm, imagparm,"","",0.6,1.1,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, BARNSLEYM3FP, BARNSLEYJ3, XAXIS,
Barnsley3FPFractal,otherjuliafp_per_pixel,JuliafpSetup,StandardFractal,STDBAILOUT,

"*mandellambda",realz0, imagz0,"","",0,0,0,0, WINFRAC,
-3.0, 5.0, -3.0, 3.0, 0, LAMBDAFP, NOFRACTAL, MANDELLAMBDA, XAXIS_NOPARM,
LambdaFPFractal,mandelfp_per_pixel,MandelfpSetup,StandardFractal,STDBAILOUT,

"julibrot", "","","","", -.83, -.83, .25, -.25, NOGUESS+NOTRACE+NOROTATE+NORESUME+WINFRAC,
-2.0, 2.0, -1.5, 1.5, 1, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
JuliaFractal, jb_per_pixel, JulibrotSetup, Std4dFractal, NOBAILOUT,

"*lorenz3d",timestep,"a","b", "c",.02,5,15,1, NOGUESS+NOTRACE+NORESUME+WINFRAC,
-30.0, 30.0, -30.0, 30.0, 0, NOFRACTAL, NOFRACTAL, LLORENZ3D, NOSYM,
lorenz3dfloatorbit, NULL, orbit3dfloatsetup, orbit3dfloat, NOBAILOUT,

"rossler3d",timestep,"a","b", "c",.04, .2, .2, 5.7, NOGUESS+NOTRACE+NORESUME+WINFRAC,
-30.0, 30.0, -20.0, 40.0, 16, NOFRACTAL, NOFRACTAL, FPROSSLER, NOSYM,
rosslerlongorbit, NULL, orbit3dlongsetup, orbit3dlong, NOBAILOUT,

"*rossler3d",timestep,"a","b", "c",.04, .2, .2, 5.7, NOGUESS+NOTRACE+NORESUME+WINFRAC,
-30.0, 30.0, -20.0, 40.0, 0, NOFRACTAL, NOFRACTAL, LROSSLER, NOSYM,
rosslerfloatorbit, NULL, orbit3dfloatsetup, orbit3dfloat, NOBAILOUT,

"henon","a","b","","",1.4,.3,0,0, NOGUESS+NOTRACE+INFCALC+WINFRAC,
-1.4, 1.4, -.5, .5, 16, NOFRACTAL, NOFRACTAL, FPHENON, NOSYM,
henonlongorbit, NULL, orbit3dlongsetup, orbit2dlong, NOBAILOUT,

"*henon","a","b","","",1.4,.3,0,0, NOGUESS+NOTRACE+INFCALC+WINFRAC,
-1.4, 1.4, -.5, .5, 0, NOFRACTAL, NOFRACTAL, LHENON, NOSYM,
henonfloatorbit, NULL, orbit3dfloatsetup, orbit2dfloat, NOBAILOUT,

"pickover","a","b","c","d",2.24,.43,-.65, -2.43, NOGUESS+NOTRACE+NORESUME+WINFRAC,
-2.8, 2.8, -2.0, 2.0, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
pickoverfloatorbit, NULL, orbit3dfloatsetup, orbit3dfloat, NOBAILOUT,

"gingerbreadman","","","","",0,0,0,0, NOGUESS+NOTRACE+INFCALC+WINFRAC,
-4.5, 8.5, -4.5, 8.5, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
gingerbreadfloatorbit, NULL, orbit3dfloatsetup, orbit2dfloat, NOBAILOUT,

"diffusion", "Border size","","", "",10,0,0,0,
NOZOOM+NOGUESS+NOTRACE+WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
NULL, NULL, StandaloneSetup, diffusion, NOBAILOUT,

"*unity", "","","","",0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, UNITY, XYAXIS,
UnityfpFractal, otherjuliafp_per_pixel,StandardSetup,StandardFractal,NOBAILOUT,

"*spider", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.5, 1.5, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, SPIDER, XAXIS_NOPARM,
SpiderfpFractal,mandelfp_per_pixel, MandelfpSetup,StandardFractal,STDBAILOUT,

"spider", realz0, imagz0,"","",0,0,0,0, WINFRAC,
-2.5, 1.5, -1.5, 1.5, 1, NOFRACTAL, NOFRACTAL, SPIDERFP, XAXIS_NOPARM,
SpiderFractal,mandel_per_pixel, MandellongSetup,StandardFractal,STDBAILOUT,

"tetrate", realparm, imagparm,"","",0,0,0,0, WINFRAC,
-2.0, 2.0, -1.5, 1.5, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, XAXIS,
TetratefpFractal,othermandelfp_per_pixel,MandelfpSetup,StandardFractal,STDBAILOUT,

"magnet1m", realz0, imagz0,"","",0,0,0,0,WINFRAC,
-4.0, 4.0, -3.0, 3.0, 0, MAGNET1J,NOFRACTAL,NOFRACTAL, XAXIS_NOPARM,
Magnet1Fractal,mandelfp_per_pixel,MandelfpSetup,StandardFractal,100.0,

"magnet1j", realparm, imagparm,"","",0,0,0,0,WINFRAC,
-8.0, 8.0, -6.0, 6.0, 0, NOFRACTAL,MAGNET1M,NOFRACTAL, XAXIS_NOIMAG,
Magnet1Fractal,juliafp_per_pixel,JuliafpSetup,StandardFractal,100.0,

"magnet2m", realz0, imagz0,"","",0,0,0,0,WINFRAC,
-1.5,3.7, -1.95,1.95, 0, MAGNET2J,NOFRACTAL,NOFRACTAL, XAXIS_NOPARM,
Magnet2Fractal,mandelfp_per_pixel,MandelfpSetup,StandardFractal,100.0,

"magnet2j", realparm, imagparm,"","",0,0,0,0,WINFRAC,
-8.0, 8.0, -6.0, 6.0, 0, NOFRACTAL,MAGNET2M,NOFRACTAL, XAXIS_NOIMAG,
Magnet2Fractal,juliafp_per_pixel,JuliafpSetup,StandardFractal,100.0,

"bifurcation", "", "","","",0,0,0,0,NOGUESS+NOTRACE+NOROTATE+WINFRAC,
1.9, 3.0, 0, 1.34, 1, NOFRACTAL, NOFRACTAL, BIFURCATION, NOSYM,
LongBifurcVerhulst, NULL, StandaloneSetup, Bifurcation, NOBAILOUT,

"biflambda", "", "","","",0,0,0,0,NOGUESS+NOTRACE+NOROTATE+WINFRAC,
-2.0, 4.0, -1.0, 2.0, 1, NOFRACTAL, NOFRACTAL, BIFLAMBDA, NOSYM,
LongBifurcLambda, NULL, StandaloneSetup, Bifurcation, NOBAILOUT,

"*biflambda", "", "","","",0,0,0,0,NOGUESS+NOTRACE+NOROTATE+WINFRAC,
-2.0, 4.0, -1.0, 2.0, 0, NOFRACTAL, NOFRACTAL, LBIFLAMBDA, NOSYM,
BifurcLambda, NULL, StandaloneSetup, Bifurcation, NOBAILOUT,

"bif+sinpi", "", "","","",0,0,0,0,NOGUESS+NOTRACE+NOROTATE+WINFRAC,
0.275,1.45, 0.0, 2.0, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
BifurcAddSinPi, NULL, StandaloneSetup, Bifurcation, NOBAILOUT,

"bif=sinpi", "", "","","",0,0,0,0,NOGUESS+NOTRACE+NOROTATE+WINFRAC,
-2.5, 2.5, -3.5, 3.5, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
BifurcSetSinPi, NULL, StandaloneSetup, Bifurcation, NOBAILOUT,

"*popcornjul", "", "", "","",0,0,0,0, WINFRAC,
-3.0, 3.0, -2.2, 2.2, 0, NOFRACTAL, NOFRACTAL, LPOPCORNJUL, ORIGIN,
PopcornFractal, otherjuliafp_per_pixel, JuliafpSetup,StandardFractal,STDBAILOUT,

"popcornjul", "", "", "","",0,0,0,0, WINFRAC,
-3.0, 3.0, -2.2, 2.2, 16, NOFRACTAL, NOFRACTAL, FPPOPCORNJUL, ORIGIN,
LPopcornFractal, long_julia_per_pixel, JulialongSetup, StandardFractal,STDBAILOUT,

"lsystem", "Order", "", "", "", 2, 0, 0, 0, NOZOOM+NORESUME+NOGUESS+NOTRACE+WINFRAC,
-1, 1, -1, 1, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
NULL, NULL, StandaloneSetup, Lsystem, NOBAILOUT,

"*manowarj", realparm, imagparm,"","",0,0,0,0, WINFRAC,
-2.5, 1.5, -1.5, 1.5, 0, NOFRACTAL, MANOWARFP, MANOWARJ, NOSYM,
ManOWarfpFractal,juliafp_per_pixel, JuliafpSetup,StandardFractal,STDBAILOUT,

"manowarj", realparm, imagparm,"","",0,0,0,0, WINFRAC,
-2.5, 1.5, -1.5, 1.5, 1, NOFRACTAL,MANOWAR , MANOWARJFP, NOSYM,
ManOWarFractal,julia_per_pixel, JulialongSetup,StandardFractal,STDBAILOUT,

NULL, NULL, NULL, NULL, NULL,0,0,0,0, 0, /* marks the END of the list */
0, 0, 0, 0, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,
NULL, NULL, NULL, NULL,0
};