Category : C Source Code
Archive   : CEPHES22.ZIP
Filename : TAN.C

 
Output of file : TAN.C contained in archive : CEPHES22.ZIP
/* tan.c
*
* Circular tangent
*
*
*
* SYNOPSIS:
*
* double x, y, tan();
*
* y = tan( x );
*
*
*
* DESCRIPTION:
*
* Returns the circular tangent of the radian argument x.
*
* Range reduction is modulo pi/4. A rational function
* x + x**3 P(x**2)/Q(x**2)
* is employed in the basic interval [0, pi/4].
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0,+1.07e9 44000 4.0e-17 1.0e-17
* IEEE +-1.07e9 30000 2.9e-16 8.1e-17
*
* ERROR MESSAGES:
*
* message condition value returned
* tan total loss x > 1.073741824e9 0.0
*
*/
/* cot.c
*
* Circular cotangent
*
*
*
* SYNOPSIS:
*
* double x, y, cot();
*
* y = cot( x );
*
*
*
* DESCRIPTION:
*
* Returns the circular cotangent of the radian argument x.
*
* Range reduction is modulo pi/4. A rational function
* x + x**3 P(x**2)/Q(x**2)
* is employed in the basic interval [0, pi/4].
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE +-1.07e9 30000 2.9e-16 8.2e-17
*
*
* ERROR MESSAGES:
*
* message condition value returned
* cot total loss x > 1.073741824e9 0.0
* cot singularity x = 0 MAXNUM
*
*/

/*
Cephes Math Library Release 2.1: March, 1989
Copyright 1984, 1987, 1989 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/

#include "mconf.h"

#ifdef UNK
static double P[] = {
-1.30936939181383777646E4,
1.15351664838587416140E6,
-1.79565251976484877988E7
};
static double Q[] = {
/* 1.00000000000000000000E0,*/
1.36812963470692954678E4,
-1.32089234440210967447E6,
2.50083801823357915839E7,
-5.38695755929454629881E7
};
static double DP1 = 7.853981554508209228515625E-1;
static double DP2 = 7.94662735614792836714E-9;
static double DP3 = 3.06161699786838294307E-17;
static double lossth = 1.073741824e9;
#endif

#ifdef DEC
static short P[] = {
0143514,0113306,0111171,0174674,
0045214,0147545,0027744,0167346,
0146210,0177526,0114514,0105660
};
static short Q[] = {
/*0040200,0000000,0000000,0000000,*/
0043525,0142457,0072633,0025617,
0145241,0036742,0140525,0162256,
0046276,0146176,0013526,0143573,
0146515,0077401,0162762,0150607
};
/* 7.853981629014015197753906250000E-1 */
static short P1[] = {0040111,0007732,0120000,0000000,};
/* 4.960467869796758577649598009884E-10 */
static short P2[] = {0030410,0055060,0100000,0000000,};
/* 2.860594363054915898381331279295E-18 */
static short P3[] = {0021523,0011431,0105056,0001560,};
#define DP1 *(double *)P1
#define DP2 *(double *)P2
#define DP3 *(double *)P3
static double lossth = 1.073741824e9;
#endif

#ifdef IBMPC
static short P[] = {
0x3f38,0xd24f,0x92d8,0xc0c9,
0x9ddd,0xa5fc,0x99ec,0x4131,
0x9176,0xd329,0x1fea,0xc171
};
static short Q[] = {
/*0x0000,0x0000,0x0000,0x3ff0,*/
0x6572,0xeeb3,0xb8a5,0x40ca,
0xbc96,0x582a,0x27bc,0xc134,
0xd8ef,0xc2ea,0xd98f,0x4177,
0x5a31,0x3cbe,0xafe0,0xc189
};
/*
7.85398125648498535156E-1,
3.77489470793079817668E-8,
2.69515142907905952645E-15,
*/
static short P1[] = {0x0000,0x4000,0x21fb,0x3fe9};
static short P2[] = {0x0000,0x0000,0x442d,0x3e64};
static short P3[] = {0x5170,0x98cc,0x4698,0x3ce8};
#define DP1 *(double *)P1
#define DP2 *(double *)P2
#define DP3 *(double *)P3
static double lossth = 1.073741824e9;
#endif

#ifdef MIEEE
static short P[] = {
0xc0c9,0x92d8,0xd24f,0x3f38,
0x4131,0x99ec,0xa5fc,0x9ddd,
0xc171,0x1fea,0xd329,0x9176
};
static short Q[] = {
0x40ca,0xb8a5,0xeeb3,0x6572,
0xc134,0x27bc,0x582a,0xbc96,
0x4177,0xd98f,0xc2ea,0xd8ef,
0xc189,0xafe0,0x3cbe,0x5a31
};
static short P1[] = {
0x3fe9,0x21fb,0x4000,0x0000
};
static short P2[] = {
0x3e64,0x442d,0x0000,0x0000
};
static short P3[] = {
0x3ce8,0x4698,0x98cc,0x5170,
};
#define DP1 *(double *)P1
#define DP2 *(double *)P2
#define DP3 *(double *)P3
static double lossth = 1.073741824e9;
#endif

extern double MAXNUM;
extern double PIO4;

double tan(x)
double x;
{
double tancot();

return( tancot(x,0) );
}


double cot(x)
double x;
{
double tancot();

if( x == 0.0 )
{
mtherr( "cot", SING );
return( MAXNUM );
}
return( tancot(x,1) );
}


static double tancot( xx, cotflg )
double xx;
int cotflg;
{
double x, y, z, zz;
int j, sign;
double polevl(), p1evl(), floor(), ldexp();

/* make argument positive but save the sign */
if( xx < 0 )
{
x = -xx;
sign = -1;
}
else
{
x = xx;
sign = 1;
}

if( x > lossth )
{
if( cotflg )
mtherr( "cot", TLOSS );
else
mtherr( "tan", TLOSS );
return(0.0);
}

/* compute x mod PIO4 */
y = floor( x/PIO4 );

/* strip high bits of integer part */
z = ldexp( y, -3 );
z = floor(z); /* integer part of y/8 */
z = y - ldexp( z, 3 ); /* y - 16 * (y/16) */

/* integer and fractional part modulo one octant */
j = z;

/* map zeros and singularities to origin */
if( j & 1 )
{
j += 1;
y += 1.0;
}

z = ((x - y * DP1) - y * DP2) - y * DP3;

zz = z * z;

if( zz > 1.0e-14 )
y = z + z * (zz * polevl( zz, P, 2 )/p1evl(zz, Q, 4));
else
y = z;

if( j & 2 )
{
if( cotflg )
y = -y;
else
y = -1.0/y;
}
else
{
if( cotflg )
y = 1.0/y;
}

if( sign < 0 )
y = -y;

return( y );
}


  3 Responses to “Category : C Source Code
Archive   : CEPHES22.ZIP
Filename : TAN.C

  1. Very nice! Thank you for this wonderful archive. I wonder why I found it only now. Long live the BBS file archives!

  2. This is so awesome! 😀 I’d be cool if you could download an entire archive of this at once, though.

  3. But one thing that puzzles me is the “mtswslnkmcjklsdlsbdmMICROSOFT” string. There is an article about it here. It is definitely worth a read: http://www.os2museum.com/wp/mtswslnk/