Output of file : LOG2L.C contained in archive : CEPHES22.ZIP
/* log2l.c
*
* Base 2 logarithm, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, log2l();
*
* y = log2l( x );
*
*
*
* DESCRIPTION:
*
* Returns the base 2 logarithm of x.
*
* The argument is separated into its exponent and fractional
* parts. If the exponent is between -1 and +1, the (natural)
* logarithm of the fraction is approximated by
*
* log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
*
* Otherwise, setting z = 2(x-1)/x+1),
*
* log(x) = z + z**3 P(z)/Q(z).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0.5, 2.0 30000 9.8e-20 2.7e-20
* IEEE exp(+-10000) 70000 5.4e-20 2.3e-20
*
* In the tests over the interval exp(+-10000), the logarithms
* of the random arguments were uniformly distributed over
* [-10000, +10000].
*
* ERROR MESSAGES:
*
* log singularity: x = 0; returns MINLOG
* log domain: x < 0; returns MINLOG
*/

/*
Cephes Math Library Release 2.2: January, 1991
Copyright 1984, 1991 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/

#include "mconf.h"
static char fname[] = {"log2l"};

/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
* 1/sqrt(2) <= x < sqrt(2)
* Theoretical peak relative error = 6.2e-22
*/
#ifdef UNK
static long double P[] = {
4.9962495940332550844739E-1L,
1.0767376367209449010438E1L,
7.7671073698359539859595E1L,
2.5620629828144409632571E2L,
4.2401812743503691187826E2L,
3.4258224542413922935104E2L,
1.0747524399916215149070E2L,
};
static long double Q[] = {
/* 1.0000000000000000000000E0,*/
2.3479774160285863271658E1L,
1.9444210022760132894510E2L,
7.7952888181207260646090E2L,
1.6911722418503949084863E3L,
2.0307734695595183428202E3L,
1.2695660352705325274404E3L,
3.2242573199748645407652E2L,
};
#endif

#ifdef IBMPC
static short P[] = {
0xfe72,0xce22,0xd7b9,0xffce,0x3ffd,
0xb778,0x0e34,0x2c71,0xac47,0x4002,
0xea8b,0xc751,0x96f8,0x9b57,0x4005,
0xfeaf,0x6a02,0x67fb,0x801a,0x4007,
0x6b5a,0xf252,0x51ff,0xd402,0x4007,
0x39ce,0x9f76,0x8704,0xab4a,0x4007,
0x1b39,0x740b,0x532e,0xd6f3,0x4005,
};
static short Q[] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
0x2f3a,0xbf26,0x93d5,0xbbd6,0x4003,
0x13c8,0x031a,0x2d7b,0xc271,0x4006,
0x449d,0x1993,0xd933,0xc2e1,0x4008,
0x5b65,0x574e,0x8301,0xd365,0x4009,
0xa65d,0x3bd2,0xc043,0xfdd8,0x4009,
0x3b21,0xffea,0x1cf5,0x9eb2,0x4009,
0x545c,0xd708,0x7e62,0xa136,0x4007,
};
#endif

#ifdef MIEEE
static long P[] = {
0x3ffd0000,0xffced7b9,0xce22fe72,
0x40020000,0xac472c71,0x0e34b778,
0x40050000,0x9b5796f8,0xc751ea8b,
0x40070000,0x801a67fb,0x6a02feaf,
0x40070000,0xd40251ff,0xf2526b5a,
0x40070000,0xab4a8704,0x9f7639ce,
0x40050000,0xd6f3532e,0x740b1b39,
};
static long Q[] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0x40030000,0xbbd693d5,0xbf262f3a,
0x40060000,0xc2712d7b,0x031a13c8,
0x40080000,0xc2e1d933,0x1993449d,
0x40090000,0xd3658301,0x574e5b65,
0x40090000,0xfdd8c043,0x3bd2a65d,
0x40090000,0x9eb21cf5,0xffea3b21,
0x40070000,0xa1367e62,0xd708545c,
};
#endif

/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
* where z = 2(x-1)/(x+1)
* 1/sqrt(2) <= x < sqrt(2)
* Theoretical peak relative error = 6.16e-22
*/
#ifdef UNK
static long double R[4] = {
1.9757429581415468984296E-3L,
-7.1990767473014147232598E-1L,
1.0777257190312272158094E1L,
-3.5717684488096787370998E1L,
};
static long double S[4] = {
/* 1.00000000000000000000E0L,*/
-2.6201045551331104417768E1L,
1.9361891836232102174846E2L,
-4.2861221385716144629696E2L,
};
/* log2(e) - 1 */
#define LOG2EA 4.4269504088896340735992e-1L
#endif
#ifdef IBMPC
static short R[20] = {
0x6ef4,0xf922,0x7763,0x817b,0x3ff6,
0x15fd,0x1af9,0xde8f,0xb84b,0xbffe,
0x8b96,0x4f8d,0xa53c,0xac6f,0x4002,
0x8932,0xb4e3,0xe8ae,0x8ede,0xc004,
};
static short S[15] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
0x7ce4,0x1fc9,0xbdc5,0xd19b,0xc003,
0x0af3,0x0d10,0x716f,0xc19e,0x4006,
0x4d7d,0x0f55,0x5d06,0xd64e,0xc007,
};
static short LG2EA[] = {0xc2ef,0x705f,0xeca5,0xe2a8,0x3ffd};
#define LOG2EA *(long double *)LG2EA
#endif

#ifdef MIEEE
static long R[12] = {
0x3ff60000,0x817b7763,0xf9226ef4,
0xbffe0000,0xb84bde8f,0x1af915fd,
0x40020000,0xac6fa53c,0x4f8d8b96,
0xc0040000,0x8edee8ae,0xb4e38932,
};
static long S[9] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0xc0030000,0xd19bbdc5,0x1fc97ce4,
0x40060000,0xc19e716f,0x0d100af3,
0xc0070000,0xd64e5d06,0x0f554d7d,
};
static long LG2EA[] = {0x3ffd0000,0xe2a8eca5,0x705fc2ef};
#define LOG2EA *(long double *)LG2EA
#endif

#define SQRTH 0.70710678118654752440
extern long double MINLOGL;
long double frexpl(), ldexpl(), polevll(), p1evll();

long double log2l(x)
long double x;
{
VOLATILE long double z;
long double y;
int e;

/* Test for domain */
if( x <= 0.0L )
{
if( x == 0.0L )
mtherr( fname, SING );
else
mtherr( fname, DOMAIN );
return( -16384.0L );
}

/* separate mantissa from exponent */

/* Note, frexp is used so that denormal numbers
* will be handled properly.
*/
x = frexpl( x, &e );

/* logarithm using log(x) = z + z**3 P(z)/Q(z),
* where z = 2(x-1)/x+1)
*/
if( (e > 2) || (e < -2) )
{
if( x < SQRTH )
{ /* 2( 2x-1 )/( 2x+1 ) */
e -= 1;
z = x - 0.5L;
y = 0.5L * z + 0.5L;
}
else
{ /* 2 (x-1)/(x+1) */
z = x - 0.5L;
z -= 0.5L;
y = 0.5L * x + 0.5L;
}
x = z / y;
z = x*x;
y = x * ( z * polevll( z, R, 3 ) / p1evll( z, S, 3 ) );
goto done;
}

/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */

if( x < SQRTH )
{
e -= 1;
x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */
}
else
{
x = x - 1.0L;
}
z = x*x;
y = x * ( z * polevll( x, P, 6 ) / p1evll( x, Q, 7 ) );
y = y - ldexpl( z, -1 ); /* -0.5x^2 + ... */

done:

/* Multiply log of fraction by log2(e)
* and base 2 exponent by 1
*
* ***CAUTION***
*
* This sequence of operations is critical and it may
* be horribly defeated by some compiler optimizers.
*/
z = y * LOG2EA;
z += x * LOG2EA;
z += y;
z += x;
z += e;
return( z );
}

### 3 Responses to “Category : C Source CodeArchive   : CEPHES22.ZIPFilename : LOG2L.C”

1. Very nice! Thank you for this wonderful archive. I wonder why I found it only now. Long live the BBS file archives!

2. This is so awesome! 😀 I’d be cool if you could download an entire archive of this at once, though.

3. But one thing that puzzles me is the “mtswslnkmcjklsdlsbdmMICROSOFT” string. There is an article about it here. It is definitely worth a read: http://www.os2museum.com/wp/mtswslnk/