Output of file : INCBI.C contained in archive : CEPHES22.ZIP
/* incbi()
*
* Inverse of imcomplete beta integral
*
*
*
* SYNOPSIS:
*
* double a, b, x, y, incbi();
*
* x = incbi( a, b, y );
*
*
*
* DESCRIPTION:
*
* Given y, the function finds x such that
*
* incbet( a, b, x ) = y.
*
* the routine performs up to 10 Newton iterations to find the
* root of incbet(a,b,x) - y = 0.
*
*
* ACCURACY:
*
* Relative error:
* x a,b
* arithmetic domain domain # trials peak rms
* DEC 0,1 0,100 2500 2.9e-13 5.9e-15
* IEEE 0,1 0,100 5000 8.3e-13 1.7e-14
*
* Larger errors were observed for a near zero and b large.
*/

/*
Cephes Math Library Release 2.2: July, 1992
Copyright 1984, 1987, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/

#include "mconf.h"

extern double MACHEP, MAXNUM, MAXLOG, MINLOG;

double incbi( aa, bb, yy0 )
double aa, bb, yy0;
{
double a, b, y0;
double d, y, x, x0, x1, lgm, yp, di;
int i, n, rflg;
double incbet();
double ndtri(), exp(), fabs(), log(), sqrt(), lgam();

if( yy0 <= 0 )
return(0.0);
if( yy0 >= 1.0 )
return(1.0);

/* approximation to inverse function */

yp = -ndtri(yy0);

if( yy0 > 0.5 )
{
rflg = 1;
a = bb;
b = aa;
y0 = 1.0 - yy0;
yp = -yp;
}
else
{
rflg = 0;
a = aa;
b = bb;
y0 = yy0;
}

if( (aa <= 1.0) || (bb <= 1.0) )
{
y = yp * yp / 2.0;
}
else
{
lgm = (yp * yp - 3.0)/6.0;
x0 = 2.0/( 1.0/(2.0*a-1.0) + 1.0/(2.0*b-1.0) );
y = yp * sqrt( x0 + lgm ) / x0
- ( 1.0/(2.0*b-1.0) - 1.0/(2.0*a-1.0) )
* (lgm + 5.0/6.0 - 2.0/(3.0*x0));
y = 2.0 * y;
if( y < MINLOG )
{
x0 = 1.0;
goto under;
}
}

x = a/( a + b * exp(y) );
y = incbet( a, b, x );
yp = (y - y0)/y0;
if( fabs(yp) < 1.0e-1 )
goto newt;

/* Resort to interval halving if not close enough */
x0 = 0.0;
x1 = 1.0;
di = 0.5;

for( i=0; i<20; i++ )
{
if( i != 0 )
{
x = di * x1 + (1.0-di) * x0;
y = incbet( a, b, x );
yp = (y - y0)/y0;
if( fabs(yp) < 1.0e-3 )
goto newt;
}

if( y < y0 )
{
x0 = x;
di = 0.5;
}
else
{
x1 = x;
di *= di;
if( di == 0.0 )
di = 0.5;
}
}

if( x0 == 0.0 )
{
under:
mtherr( "incbi", UNDERFLOW );
goto done;
}

newt:

x0 = x;
lgm = lgam(a+b) - lgam(a) - lgam(b);

for( i=0; i<10; i++ )
{
/* compute the function at this point */
if( i != 0 )
y = incbet(a,b,x0);
/* compute the derivative of the function at this point */
d = (a - 1.0) * log(x0) + (b - 1.0) * log(1.0-x0) + lgm;
if( d < MINLOG )
{
x0 = 0.0;
goto under;
}
d = exp(d);
/* compute the step to the next approximation of x */
d = (y - y0)/d;
x = x0;
x0 = x0 - d;
if( x0 <= 0.0 )
{
x0 = 0.0;
goto under;
}
if( x0 >= 1.0 )
{
x0 = 1.0;
goto under;
}
if( i < 2 )
continue;
if( fabs(d/x0) < 256.0 * MACHEP )
goto done;
}

done:
if( rflg )
x0 = 1.0 - x0;
return( x0 );
}

### 3 Responses to “Category : C Source CodeArchive   : CEPHES22.ZIPFilename : INCBI.C”

1. Very nice! Thank you for this wonderful archive. I wonder why I found it only now. Long live the BBS file archives!

2. This is so awesome! 😀 I’d be cool if you could download an entire archive of this at once, though.

3. But one thing that puzzles me is the “mtswslnkmcjklsdlsbdmMICROSOFT” string. There is an article about it here. It is definitely worth a read: http://www.os2museum.com/wp/mtswslnk/