Output of file : ELLIE.C contained in archive : CEPHES22.ZIP
/* ellie.c
*
* Incomplete elliptic integral of the second kind
*
*
*
* SYNOPSIS:
*
* double phi, m, y, ellie();
*
* y = ellie( phi, m );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
* phi
* -
* | |
* | 2
* E(phi_\m) = | sqrt( 1 - m sin t ) dt
* |
* | |
* -
* 0
*
* of amplitude phi and modulus m, using the arithmetic -
* geometric mean algorithm.
*
*
*
* ACCURACY:
*
* Tested at random arguments with phi in [0, 2] and m in
* [0, 1].
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0,2 2000 1.9e-16 3.4e-17
* IEEE 0,2 10000 2.2e-15 2.1e-16
*
*
*/

/*
Cephes Math Library Release 2.0: April, 1987
Copyright 1984, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/

/* Incomplete elliptic integral of second kind */

extern double PI, PIO2, MACHEP;

double ellie( phi, m )
double phi, m;
{
double a, b, c, e, temp;
double lphi, t, step;
double sqrt(), fabs(), log(), sin(), tan(), atan();
double ellpe(), ellpk();
int d, mod, sign;

if( m == 0.0 )
return( phi );
if( m == 1.0 )
return( sin(phi) );
lphi = phi;
if( lphi < 0.0 )
lphi = -lphi;
a = 1.0;
b = 1.0 - m;
b = sqrt(b);
c = sqrt(m);
d = 1;
e = 0.0;
t = tan( lphi );
mod = (lphi + PIO2)/PI;

while( fabs(c/a) > MACHEP )
{
temp = b/a;
lphi = lphi + atan(t*temp) + mod * PI;
mod = (lphi + PIO2)/PI;
t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
c = ( a - b )/2.0;
temp = sqrt( a * b );
a = ( a + b )/2.0;
b = temp;
d += d;
e += c * sin(lphi);
}

b = 1.0 - m;
temp = ellpe(b)/ellpk(b);
temp *= (atan(t) + mod * PI)/(d * a);
temp += e;
if( phi < 0.0 )
temp = -temp;
return( temp );
}

### 3 Responses to “Category : C Source CodeArchive   : CEPHES22.ZIPFilename : ELLIE.C”

1. Very nice! Thank you for this wonderful archive. I wonder why I found it only now. Long live the BBS file archives!

2. This is so awesome! 😀 I’d be cool if you could download an entire archive of this at once, though.

3. But one thing that puzzles me is the “mtswslnkmcjklsdlsbdmMICROSOFT” string. There is an article about it here. It is definitely worth a read: http://www.os2museum.com/wp/mtswslnk/